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ABSTRACT

A theoretical model for the interaction of a turbulent boundary layer with

an oscillating wavy surface over which a fluid is flowing is developed, with an

application to wind-driven water waves and to panel flutter in low supersonic flow.

A systematic methodology is developed to obtain the surface pressure distribution

by considering separately the effects on the perturbed flow of a mean shear

velocity profile, viscous stresses, the turbulent Reynolds stresses, compressi-

bility, and three-dimensionality.

The problem is formulated initially for an inviscid incompressible two-

dimensional shear layer of constant thickness, and the analysis is restricted to

small-amplitude wavy surfaces and to thin boundary layers. The resulting

linearized equations are reduced to ordinary differential equations in the trans-

verse space coordinate by assuming simple harmonic time dependence and taking

the Fourier transform with respect to the streamwise space variable. An expres-

sion for the pressure is obtained by integrating the resulting equations and

inverting the Fourier transforms analytically. The effects of including viscosity

in the perturbed flow are shown to be negligible for sufficient flow unsteadiness

and for sufficiently large Reynolds number by means of a singular perturbation

treatment in which it is shown that the unsteady viscous effects are confined to

a thin region of nonuniformity near the wavy surface. Employing an eddy

viscosity assumption for the turbulent Reynolds stresses in the perturbed flow

and applying this to the singular perturbation procedure, an order of magnitude

estimate is obtained for the effects of turbulence which indicates that the

Reynolds stresses, though small, are not negligible. The inviscid shear flow

theory is extended to include compressibility, and an expression is obtained for

the first-order unsteady boundary layer effect on the pressure for subsonic,

transonic, and supersonic freestream Mach number.

The inviscid theory is applied to the wind-water wave problem by

specializing to traveling-wave disturbances, and the pressure magnitude and

phase shift as a function of the wave phase speed are computed for a logarithmic
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mean velocity profile and compared with inviscid theory and experiment. These

comparisons indicate that the inviscid theory is inadequate for this problem and

suggest that the interaction between the air and the water is not properly

accounted for. The application of the inviscid theory with a power law mean

velocity profile to the calculation of aerodynamic generalized forces on an

oscillating panel yields results which are substantially in agreement with an

exact inviscid theory. The major difference arises for the case of boundary

layer thickness to panel chord ratio equal to ten percent in which the exact

numerical theory predicts no negative aerodynamic damping in the first mode

contrary to the present theory. A one-mode Galerkin analysis for the panel

flutter problem yields reasonable agreement for flutter dynamic pressure as a

function of boundary layer thickness in comparison with other theoretical results

based on the exact inviscid theory and on a first-order theory. These results

agree with experimental evidence for the stabilization of the panel motion due to

the influence of the unsteady boundary layer.
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I. INTRODUCTI ON

1.1 MOTIVATION

This study is primarily concerned with the role of the unsteady boundary

layer in modifying the pressure on an oscillating surface over which a fluid flows.

One of the factors that motivates this study is the lack of agreement between

theoretical and experimental studies of panel flutter at low supersonic Mach

numbers. Panel flutter is a dynamic aeroelastic instability which occurs for

surface skin panels that have one side exposed to a supersonic airstream and the

other side to still air. The flutter amplitudes tend to be limited by structural

nonlinearities associated with the lateral deformation of the panel so that the mode

of structural failure is one of fatigue rather than explosive fracture of the skin

surface. For this reason the present study is of great practical interest.

Another factor which motivates the present study is an interest in under-

standing the mechanisms by which wind flowing over water waves acts to

energize the waves. Several experiments and theoretical analyses have been

performed in an attempt to understand the structure of the turbulent air motion

above the waves and the transfer of energy from the air to the waves. The

current understanding of this air-sea problem is incomplete. More detailed

experiments and improved theories are required to enhance understanding of the

physical processes involved.

In both of these problems we are concerned with the turbulent flow of air

over an oscillating surface. In the case of panel flutter the surface oscillations

are predominantly standing waves, while for the air-sea problem the ocean

surface admits traveling waves. In both cases we are interested in knowing the

pressure on the waving surface. As a designer of flight vehicles the aeroelastician

needs to know the pressure as an input to the equations of motion of the panel in

order to predict the panel response subject to variations in the Mach number,

panel dimensions, and material constants. The oceanographer is concerned with

the oscillating pressure field, since it governs the energy transfer between the

wind and water waves. This provides the basis for predicting the growth of waves.



For these reasons we choose the pressure as the quantity to be determined

in this study.

1.2 SURVEY OF PREVIOUS RESEARCH

In this section we outline briefly some of the theoretical and experi-

mental studies of boundary-layer effects on panel flutter and on the growth of

ocean waves. As background to these topics we mention briefly two survey

references on the subject of unsteady boundary layers which provide a historical

as well as a technical framework from which to conduct research on this problem.

The chapter, "Non-steady boundary layers," in the book by Schlichting (1968)

presents a comprehensive summary of the calculation of non-steady boundary

layers. The sections dealing with periodic boundary layer flows and unsteady

compressible boundary layers are of particular interest in our study. He presents

a comprehensive list of 69 references covering the past four decades of research

in this subject. The work of Lighthill (1954) concerning the case of an external

steady stream with small harmonic perturbations is a classic paper in the litera-

ture of unsteady boundary layer theory and should be consulted if one is uncertain

about whether unsteady effects must be included in the treatment of the boundary

layer. Regarding the influence of the unsteady boundary layer in aeroelastic

calculations we refer to the article by Landahl and Ashley (1968) which contains

qualitative estimates of the effect of an attached boundary layer on the unsteady

flow, a discussion of the response of a viscous boundary layer to wavy wall deforma-

tions, and a comprehensive list of 24 references.

Some of the earlier analytical studies of panel flutter have been based on

the potential flow model. The results of a flutter analysis based on this model

disagree sharply with measurements at low supersonic Mach numbers. One of

the first attempts to include the effect of the actual velocity profile was proposed

by Fung (1963). In his very simplified model the boundary layer is replaced by a

region of constant thickness in which the flow is a potential flow of constant

velocity. Miles (1959a) has attempted to include the effect of the velocity profile
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in the boundary layer while at the same time idealizing the panel as an infinite

traveling wave surface. A variation on this theme was proposed by Zeydel (1967)

in which the boundary layer is divided into many sublayers of constant velocity.

He shows that it is possible to treat the finite-chord case by use of the Fourier

integral.

By considering the boundary layer as a parallel shear flow McClure (1962)

has presented a more refined analysis in which the perturbations due to surface

traveling waves are treated by methods analogous to those developed in the theory

of boundary layer instability. His analysis includes the effects of viscosity on

the perturbation flow quantities. McClure measured velocity profiles and pressures

on a rigid wavy wall at supersonic Mach number and compared these results with

his theory. He was able to show that a "linear" theory in which the mean flow is

taken to be the flow over an unperturbed flat surface gives improved agreement

with experimentally measured pressure on a wavy wall over potential flow theory

predictions of pressure. Finally McClure applied his theory in an approximate

analysis of the flutter of a finite-chord panel. For the pressure he took the result

for an infinite standing wave obtained by superimposing two waves traveling with

equal speed in opposite directions. His flutter analysis gives improved agreement

with experiment over what can be obtained using potential-flow theory pressures.

Recently Dowell (1970, 1971) has undertaken an analysis of the flutter of

a finite-chord rectangular panel by treating the boundary layer as an inviscid

shear layer of constant thickness. Neglecting viscosity in the perturbed flow,

he treats the problem by linearizing the inviscid equations. He uses a computer

program to calculate the required aerodynamic forces and employs them in a

nonlinear flutter analysis. He compares his theoretical flutter results with the

experimental data of Muhlstein, Gaspers, and Riddle (1968). These experiments

and the succeeding work of Gaspers, Muhlstein, and Petroff (1970) are the most

definitive measurements yet obtained on the influence of the turbulent boundary

layer on panel flutter. Dowell' s results show better agreement with these

experiments for the larger values of boundary layer thickness than for the

smaller ones. In the experiments the boundary layer thickness was varied by

3



using a splitter plate to remove a portion of the wall boundary layer. It is not

clear why the agreement between theory and experiment turned out to be better

for the thicker boundary layers.

Research on the nature of the generation of water waves by wind has

proceeded along three different avenues. We find in addition to theoretical

investigations both laboratory and field measurements of the generation of gravity

waves by turbulent winds. Perhaps the most notable theoretical effort is the work

of Miles (1957, 1959b, 1960, 1962, 1967) spanning a decade. He originally

proposed an idealized inviscid model including a parallel shear flow of prescribed

velocity profile over a two-dimensional surface wave. This theory neglects non-

linear effects and first-order perturbations in the turbulent Reynolds stresses in

the calculation of the pressure distribution at the interface between the air and

the progressive water waves. The theories of Miles (1957) and Benjamin (1959)

predict a phase shift between the pressure distribution and the wavy boundary

which can be used to explain the energy transfer between air and water. Labora-

tory measurements conducted by Shemdin and Hsu (1967) and others at the Stanford

115-foot wind, water-wave tunnel compare favorably with the theoretical predic-

tions of Miles (1959b). Recently Davis (1972) presents two methods of predicting

the fluctuating turbulent stresses in the flow over a wave and uses them to compare

with the surface pressure measurements of Dobson (1969) and Kendall (1970).

Recently there have been several laboratory investigations of wind-driven

waves. An experimental study in which the water waves are simulated by

mechanically driven deformations in a smooth neoprene rubber sheet was con-

ducted by Kendall (1970). Kendall' s pressure measurements compare favorably

with the Miles theory; however, evidence of non-linear effects and modulation of

the turbulent structure by the waves strongly suggests phenomena which cannot

be explained by a linear inviscid theory. Stewart (1970) has measured the wave-

induced perturbation-velocity field using a wind-water tunnel. These measure-

ments have been compared with the numerical calculations of Davis (1970) for a

model similar to Miles' formulation except for the inclusion of viscous terms
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and a second model including the turbulent Reynolds stresses. Neither of these

theories predicts the velocity field well although they do exhibit the correct

qualitative nature of the velocity field. Saeger and Reynolds (1971) have measured

the perturbation pressures in a two-dimensional channel flow with one mechani-

cally articulated waving wall. These pressures are compared with theoretical

models - an inviscid model, a laminar viscous model, and a turbulent model

in which the oscillations of the turbulent Reynolds stresses are modeled using an

eddy viscosity assumption. None of the models are entirely satisfactory and the

suggestion is made that a more accurate representation of the wave-induced

distortions of the turbulent Reynolds stresses is required.

With regard to field measurements Miles (1967) reports that agreement

with the laminar viscous model is not as good as with the laboratory measurements.

He suggests that the discrepancy between field and laboratory measurements, vis-

a-vis the laminar model, is due to the relative importance of the wave-induced

Reynolds stresses with scale. He postulates an appropriate scale parameter in

which the time scale for the turbulence is larger for the ocean than for the

laboratory data. He generalizes the laminar model to include the perturbations

in the turbulent Reynolds stresses but indicates that further theoretical progress

demands some ad hoc hypothesis for the specification of these stresses. He con-

cludes that more detailed experimental data is required to guide the choice of such

hypotheses. The recent field measurements of Kondo et al. (1972) throw some

light on the future course of the study of the turbulent transfer mechanism over

the sea. Commenting on the discrepancies between their observations and the

inviscid theory these authors emphasize the role of turbulent diffusion, the three-

dimensional pattern of the sea surface, and the interaction between different

frequency components. They cite the high intensity of atmospheric turbulence as

a cause for the discrepancy between field and laboratory measurements.
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1.3 SCOPE OF THIS STUDY

This study is concerned with flow over an unbounded surface that is

characterized by small deviations from a plane. The plane is parallel to the

undisturbed freestream and the surface deviations may be unbounded or they may

be confined to a region of finite length. The former case characterizes the air-

sea problem while the latter is appropriate to the flutter of a finite-chord panel.

The unbounded nature of the unperturbed surface permits the characterization of

the unperturbed boundary layer as a parallel shear flow. We consider both

laminar and turbulent boundary layers, yet our interest is with turbulent flow owing

to the applications discussed previously. The Mach number is taken to include

the range from zero to low supersonic, and the Reynolds number is taken to be

large or infinite.

Generally there are two distinct approaches that can be taken in a theoretical

analysis of the boundary layer. One approach employs the differential equations

of motion as a starting point while the other employs integral equations which are

obtained by integrating the differential equations across the boundary layer. Both

methods are considered in this study. An integral scheme is considered in

Chapter 2. The effect of the unsteady boundary layer is represented by an unsteady

displacement thickness which is determined from the momentum integral equation.

Questions regarding the best way to obtain closure for the set of governing

equations and the inability to consider separately the effects of the shear profile

and the effects of finite Reynolds number lead us to abandon this approach in

favor of a scheme based on the differential equations.

We propose an inviscid perturbation of a two-dimensional parallel shear

flow in Chapter 3. We assume that the amplitude of the surface deformations is

small compared to the boundary layer thickness implying that the mean shear

flow is unaffected by the surface motion. The assumption that the boundary-layer

thickness is constant along the deformed surface will be satisfactory for thicker

boundary layers, yet we restrict the analysis to small values of a nondimensional-

ized boundary-layer thickness parameter, 5 , for the purpose of obtaining a first-
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order effect of the boundary layer. This analysis results in an expression for the

perturbation pressure at the surface which gives primarily the effect of the mean

shear velocity profile. The effect of including viscosity in the perturbed flow is

considered in Chapter 4. The two-dimensional incompressible flow is posed as

a singular perturbation problem in which the basic outer flow is the inviscid

problem treated in Chapter 3. We determine the effect on the surface pressure

of including the viscous stress in the perturbed flow problem. We find that for

large finite Reynolds number and sufficient flow unsteadiness the effect of

viscosity on the pressure is negligible.

The role of turbulence is known to be rather important, especially in the

mechanism of wind-driven water waves. We consider the effect of including the

oscillations of the turbulent Reynolds stress in Chapter 5. We formulate the two-

dimensional incompressible problem following the framework suggested by

Hussain and Reynolds (1970). In seeking mathematical closure of the problem we

explore the possibility of making an ad hoc assumption about the behavior of the

perturbation Reynolds stress. We demonstrate that the effect of turbulence is

considerably more important than the effect of viscosity in the perturbation flow;

however, we note that the effect of the turbulent stresses on the pressure is

minor compared to the effect of the mean shear profile for sufficiently large

Reynolds number.

With the goal of obtaining an expression for the surface pressure suitable

for application to the problem of panel flutter we consider the effects of compress-

ibility and three-dimensionality in Chapters 6 and 7. Having determined that the

roles of viscosity and turbulent Reynolds stresses are of secondary importance

insofar as the pressure is concerned, we extend the analysis developed in Chapter

3 by including separately compressibility and three-dimensionality. We obtain

an expression for pressure that is applicable both for subsonic and supersonic

flow. For the purposes of performing a flutter analysis we obtain an expression

for the generalized aerodynamic forces which employs the Fourier transform of

the surface pressure rather than the pressure itself. This simplifies the task

7



considerably owing to the complexity of inverting the double Fourier transform

for the case of flutter of a rectangular panel.

The remainder of the study concerns the application of the results to the

problems of interest. By specializing the theory to the case of a traveling-wave

disturbance we can compare the theory to both the Miles theory for wind-driven

water waves and to some of the experimental measurements discussed briefly

in the previous section. With the intent of comparison with Dowell' s (1970)

theory and the experiments of Muhlstein et al. (1968) we consider the flutter of a

two-dimensional panel of infinite span, a plate-column. We calculate the

generalized aerodynamic forces and use them in an approximate flutter analysis.

We indicate the need for a continuation of this study in the application of the

theory to the flutter of a rectangular panel. In the concluding discussion we

summarize the essential contributions of this research and suggest opportunities

for further study based on the experience gained in the present undertaking.
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II. AN INTEGRAL METHOD FOR THE ANALYSIS OF THE UNSTEADY

BOUNDARY LAYER OVER AN OSCILLATING SURFACE

2.1 INTRODUCTION

As in most research efforts there is a great deal of time and energy

spent exploring various approaches to a particular problem. Some of the attempts

to treat a particular problem prove to be "blind alleys" through which no further

progress can be made, while other approaches prove more fruitful. Usually a

great deal is learned in the unsuccessful attempts at solving the problem, and

this process must be experienced before the real contribution to a given research

can be made. Unfortunately all too often only the details of the finished product

are presented in a way that would indicate that the polished result is a complete

description of the total work that was performed in the course of the research.

This leads to a false impression of the total content of the research and in some

cases results in an incomplete reporting of information that could be vitally use-

ful to someone pursuing a related problem in the same field. In the spirit of

reporting as much as possible about this research we discuss here some of the

details of an approach to the present problem that was later abandoned in favor

of the methodology described in the remaining chapters. We highlight here the

basic details of this approach and attempt to show the difficulties associated

with applying the methodology to the present problem.

2.2 EVOLUTION OF THE IDEA

The problem of determining the surface pressure on an oscillating

surface with an unsteady turbulent boundary-layer flow suggests a situation of

rather great complexity. In constructing an appropriate theoretical model it is

necessary to account for the effect of friction and turbulence in the boundary

layer as well as the conditions imposed by the moving boundary. One technique

which has been used with some success in the treatment of steady turbulent

boundary layers is a method involving integral equations of motion. In this

9



approach the boundary-layer momentum equation is integrated across the

boundary layer to obtain the momentum integral equation. The chief advantage

of this approach is the implicit manner in which the effects of turbulence and

viscosity can be incorporated in the formulation. A disadvantage is the difficulty

of extension to a wider class of flows. There is an excellent description of

differential and integral methods for treatment of steady turbulent boundary-layer

flows in an article by Reynolds (1968).

The obvious idea is to extend the integral approach to the present unsteady

problem. There have been several attempts to date to treat unsteady laminar

boundary layers by means of an integral method. In the recent work of Teipel

(1969, 1970) a procedure similar to that of the Karman-Pohlhausen method has

been used to study the oscillating boundary-layer flow along a flat plate. The

method is sufficiently general so as to allow extension to problems involving

flutter. Another approach has been taken by Yates (1969) in his treatment of the

flutter problem. He suggests that the boundary layer may be assumed to behave

in a quasi-steady manner in response to external disturbances. This allows the

extension of the integral treatment of the flow over a rigid wavy wall to the flow

over an oscillating surface. The quasi-steady assumption is warranted if the

surface oscillations are sufficiently slow so as to allow the boundary layer to

adjust to the changing conditions imposed by the moving boundary. Comparing the

characteristic time for diffusion of disturbances in the boundary layer, 6 2 1/ ,

with the period of a surface oscillation we find that the quasi-steady assumption is

justified whenever the diffusion time is much smaller than the oscillation period.

This condition for a turbulent boundary layer requires that the reduced frequency,

k, be so small as to render the quasi-steady assumption outside the realm of

most physically meaningful applications. For example, k ~ 0(1) for the

problem of panel flutter and for the air-sea interaction problem. In light of

this we do not pursue the quasi-steady approach. We concentrate on the unsteady

integral approach based on the unsteady momentum-integral equation.
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2.3 AN EQUIVALENT INVISCID FLOW OVER THE DISPLACEMENT SURFACE

Consider the two-dimensional incompressible flow over an oscillating

surface (Fig. 2. 1). The flow field consists of a turbulent boundary layer adja-

cent to the surface and an inviscid flow outside the boundary layer. We assume

that the boundary layer thickness is constant and large compared to the ampli-

tude of the surface oscillations. The latter assumption is justified in the analysis

of the stability of infinitesimal panel oscillations. Furthermore, we assume that

the amplitude of the oscillations is small compared to their characteristic wave-

length. We note that the given flow is equivalent to a fictitious inviscid flow

over a displacement surface such that the transverse velocity at some surface

z = h (outside the boundary layer) is equivalent for the two flows. We assume

that the pressure distribution on the displacement surface in the fictitious in-

viscid flow is the same as the pressure on the actual surface in the real turbulent

boundary-layer flow. In order to determine the pressure we require an expres-

sion for the displacement surface.

Moore and Ostrach (1957) have derived a differential equation for such

a surface for a compressible, three-dimensional unsteady boundary layer. We

assume that the displacement surface may be described as the sum of the actual

surface and a displacement thickness as follows:

zD = s(x, t) + A (x,t) (2.1)

Without presenting their derivation here we specialize Moore and Ostrach' s

result for two-dimensional flow:

/ Xx(ueA ) + A /)t = )/cx(u e ) +s6 / t (2.2)

where

8 =f1 - pu/peue)dz
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FIGURE 2,1
TWO DIMENSIONAL FLOW OVER AN OSCILLATING WAVY SURFACE
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S=J(1 - P/Pe)dZ
0

The two quantities 6 and 61 are the displacement thickness and the density

defect thickness, respectively. The latter quantity is zero for incompressible

flow. The velocity at the edge of the boundary layer is given by u . Note that
e

in the case of steady flow we have that

S= 6 , (2.3)

so that the displacement surface thickness is given by the mass displacement

thickness. For steady flow we use the two interchangeably, but for unsteady

flow this is definitely not the case.

Let us assume that the problem of interest may be considered as a small

perturbation about the incompressible steady flow boundary layer over a flat

plate. We represent the quantities of interest (nondimensionally) as follows:

* * ** ikt
A = o + EqA(x)e

* * A^* ikt
6 =6 +E61(x)e (2.4)

ikt
U e u + 1(x)e

when the actual surface is executing simple harmonic motion about the mean

flat plate surface (z = 0) of the form

A ikt
z = ez s(x)e (2.5)

where E is a nondimensional amplitude parameter defined in the nomenclature.

From (2. 3) we have for the mean flow

A = 60 (2.6)

Substituting (2. 4) and (2. 6) in (2. 2) and neglecting the terms of 0(e 2 ) we obtain

the following equation for the perturbation term of 0(E):

^* A* A*

A1 (x) +ikz = 61'(x) (2.7)
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The solution to (2. 7) subject to the boundary condition

(x) = 0, x < 0 (2. 8)

is

x * -ik(x-x1)

A1 =J 61(X1)e dx1  (2.9)

O

The remaining task is to determine the pressure for the inviscid flow

over the displacement surface

* ikt
z = A +E(zs(x) + A(x))e (2.10)

Since the boundary-layer thickness is assumed constant we can assume that

the mean part of zD is constant. We are really interested in the flow over

the perturbation part of zD , which is the actual surface augmented by the

variable portion of the displacement surface. In the linearized potential flow

theory the surface pressure is given by the superposition

P = E(Po + PBL)eikt (2.11)

where Po is the pressure due to zs and PBL is the pressure due to A '. In

order to proceed further we must specify z and A. We assume that z s is

given and we find A1 from (2.9). This requires that we determine the mass dis-

placement thickness, 5 . We proceed by considering the momentum-integral

equation for unsteady flow.

2.4 THE UNSTEADY MOMENTUM-INTEGRAL EQUATION

The unsteady boundary layer may be described by the continuity and

momentum equations

ux +wz = 0 (2.12)

1 1
ut +uu +wu - p +- (2.13)

X Z pe x 14
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We assume that the no-slip conditions apply at the surface. The linearized form

of these conditions is

w(x, 0, t) = z (x, t) (2. 14a)
st

u(x, 0, t)= - uz(X, 0, t)z s(X, t) (2. 14b)

The integral statement of the problem is obtained by integrating (2. 13) across

the boundary layer. See Appendix A for a derivation which parallels that given by

Teipel (1970). The result innondimensional variables is the unsteady momentum-

integral equation

* * *
6 +(6 +20)u +(6 +6 U t ) - w ( 1 - ) = - C  (2.15)

x t o

where

0

6 (1 - u)dz

0

0

8 u(1 - u)dz

0

1 2
Cf = o/ 2pUo

o

This equation introduces the momentum defect thickness, 9, and the skin-

friction coefficient, Cf , evaluated at z = 0. Note that w and u are the

velocity components at z = 0 given by the nondimensional form of (2. 14) with

(2. 5). Thus we have approximately

ikt
w = Eikzs (x)e

(2.16)
iktu = - EU' (0)z (x)e

assuming that we can write the u-component of velocity as the sum of a mean

and an unsteady perturbation
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u = U(z) +EU1 (x, z)ekt (2.17)

If, in addition, we assume that 6,6 ,u e , and Cf can be represented

as in (2. 17), then the terms of 0(E) in (2. 15) yield the foo llowing perturbation

equation:

* "** 1

0'(x)+ (o + 20)u (x)+ik( 1 +oue ) - ikz s  2 Cfo (2.18)

In this equation 5 and 0 are constants and may be determined from
o O

1

6 = 6 (1 - U(z*))dz* (2.19)

0

1

0 = 6JfU(z*)(1 - U(z*))dz* (2.20)

0O

where

z* = z/6
0

We may assume that the effect of the perturbation shear stress is negligible

insofar as the determination of the pressure is concerned (see Chapter IV) so

that we may neglect C in (2. 18). This equation then contains three unknowns:
fo
1 ^*

11, and ue . We need two additional equations in order to determine 61.
1

One equation for u may be found by noting that u is the velocity at
e e

the edge of the boundary layer. This velocity is equivalent to the velocity on the

displacement surface z given by (2. 10). With a constant and assuming that
D o

~ 0(60) << 1 we can state approximately that ue is equivalent to the velocity

at the actual surface in inviscid flow. Thus Ui is approximately equal to the
e

u-velocity at z = 0 in the linearized potential fow over the surface z given

by (2. 5). Symbolically

u = (x, ) = f(z (x)) (2.21)
e s s

where the functional dependence upon z is determined by the potential flow

16



solution.

An additional equation can be obtained by specifying a relationship be-

tween the perturbation displacement and momentum thicknesses of the form

H = 51/ (2.22)

where H1 is a shape factor which must be determined by further analysis.

2.5 CLOSURE OF THE SET OF EQUATIONS

^,

We have postulated a relationship between 61 and 81. Using the defini-

tions of 6 and 8 in (2. 15) and the assumed velocity profile in (2. 17), we obtain

the following expression for H1:

1

- u(x, z*)dz *

H o (2.23)
1 1

U1 (X, z*)(1 - 2U(z*))dz*

0

The closure of this integral scheme is dependent upon the choice of a perturbation

velocity profile, l1 (X, z ).

For laminar flow we can follow Teipel' s suggestion and assume a fourth

order polynomial for the u-velocity components of the form

4

U =Iai(z*)i  (2. 24a)

i=O

4

Ul = Ai(z*)i (2. 24b)

i=0

The unknown coefficients are determined by stipulating appropriate boundary

conditions for u at z = 0 and at z = 1. The resulting velocity profile is

very similar to the polynomial used in the original method by von Kdrmdn (1921)

and Pohlhausen (1921). The method is ordinarily restricted to laminar flows
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where the shear stress can be expressed in terms of a velocity gradient. It is

possible to extend the method to treat the turbulent boundary layer. For the case

of steady flow Tanaka and Himeno (1970) have shown that the velocity profile can be

approximated by a polynomial in the outer layer, in that part of the velocity which

remains after subtracting the velocity which changes very rapidly in the neighbor-

hood of the wall (sublayer). The coefficients of the polynomial are determined by the

boundary conditions at the inside and the outside edges of the outer layer. The

thickness of the inner layer (sublayer) is so thin that it is replaced by z* = 0. It

seems reasonable to assume that this idea can be extended to the unsteady flow

of interest. The difficulty of applying this method rests with the uncertainty of

our knowledge of the conditions at the edge of the sublayer, particularly the perturba-

tion velocity component and shear stress.

Another possibility would be to determine the perturbation velocity component

by solving directly for the perturbation flow. The flow is a small perturbation of

the steady mean boundary layer over a flat plate. This approach goes somewhat

beyond the original intent of an integral method in the sense that we would be de-

teimining the details of the boundary-layer flow, a task which is supposed to be

alleviated by use of an integral method. We have no choice, however, if we are to

determine ul by purely theoretical means. We develop such a methodology in

the following chapter, the output of which can be utilized for the present purpose.

We find that we can determine the surface pressure directly by this method rather

than using this output with (2. 20) in conjunction with the integral method. This

implies.that an integral method is perhaps not the most direct way to attack the

present problem.

In lieu of closing the set of equations by obtaining suitable information on

the perturbation velocity profile, there are alternative ways to proceed. One can

attempt to find additional integral equations relating the integral parameters. In

the article by Reynolds mentioned earlier we find several possibilities for the

choice of an additional integral equation. One choice involves the mean energy

integral equation and requires information about the turbulent shear stress in

calculating the dissipation of energy from the mean field to the turbulence.
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Another choice involves the entrainment concept to provide an additional equation.

The moment of momentum integral equation, formed by multiplication by z*,

is yet another choice and requires an assumption about the integral of the turbu-

lent shear stress. The discussion of Reynolds for steady flow can be generalized

for unsteady flow, though we have not pursued these ideas for the present integral

scheme. We find that the approach taken in succeeding chapters does not suffer

from the uncertainties associated with some of the semi-empirical assumptions

that are required in connection with the choice of the second integral equation.

Owing to these uncertainties we will not enlarge upon this analysis; instead, we

proceed to a consideration of the problem based on the differential form of the

equations of motion.
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III. TWO-DIMENSIONAL INCOMPRESSIBLE INVISCID SHEAR FLOW

OVER AN OSCILLATING SURFACE

3.1 INTRODUCTION

The goal of this chapter is to determine the surface pressure perturba-

tions due to the unsteady boundary layer flow over an oscillating surface without

considering the effects of viscosity directly. The latter will be represented in-

directly by the mean shear velocity profile and its effect on the perturbation

flow field.

Consider the flow over a surface that is essentially plane except for

small unsteady perturbations. Refer again to Fig. 2. 1 and to Fig. 3. 1 where we

have chosen a Cartesian coordinate system with flow in the x-direction over a

surface which is executing simple harmonic motion and which can be described

as follows:

iW t
z (x,t)= az (x)e (3.1)

It is assumed that flow conditions do not vary in the y-direction. Assume that the

amplitude of the surface perturbations, a, is much smaller than a characteristic

length, L. The length, L, may be the wavelength of a traveling wave-train

for the case of ocean waves or the panel chord for the case of panel flutter.

This condition can be expressed by the requirement that the ratio of these two

lengths is a small quantity; that is,

E = a/L << 1 (3.2)

The function z which describes the spatial part of the surface perturbations

is left unspecified at this point for greater generality. The disturbances can

extend over the entire range of x or they may be limited to a finite length.

The flow is assumed to be divided into two distinct regions: a thin boundary

layer adjacent to the oscillating surface and an outer flow region above the boundary

layer which extends to infinity in the z-direction. Let us assume that the thickness

of the boundary layer is constant over the region of the surface perturbations.

Furthermore, let us assume that this thickness, call it b.1. ' is large compared

20



z
z=z(x,t)U() 8b.

I- L >j___

FIGURE 3.1
DETAILS OF THE SHEAR LAYER MODEL FOR FLOW OVER

AN OSCILLATING WAVY SURFACE
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to the surface perturbation amplitude, a, yet small compared to the length,

L. In terms of a thickness made nondimensional by L, this condition is

E << << 1,
o (3.3)

8 =b. /L
o b. .

Implicit in this assumption is the additional assumption that the mean shear pro-

file is unaffected by the motion of the surface.

3.2 FORMULATION OF THE PROBLEM

The governing equations for incompressible two-dimensional flow, neg-

lecting viscosity, are the equations of conservation of momentum and mass.

These equations can be expressed using nondimensional variables (lengths

nondimensionalized by L, time by L/u , velocity by u , and pressure by

p/pu ) as follows:

ut +uu +wu = - Px (3.4)

wt +uw +ww = - p (3.5)

u +w = 0 (3.6)
x z

We assume that the flow variables may be decomposed into a mean flow quantity

and a perturbation quantity that is linear in the small nondimensional amplitude

parameter, E. Thus,

ikt
u = U(z) +Eu(x, z)e

ikt
w = E(x, z)e (3.7)

and

ikt
p = p(z) +Ep(x, z)e

The mean flow quantities are assumed to be solutions of the full Navier-Stokes

equations. Note that in the boundary layer

p = Constant since pz = 0 (3.8)

if we use the boundary-layer approximation for the mean flow. The mean longi-

tudinal velocity component or mean shear profile is assumed to vary only in the
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boundary layer, that is

U(z), 0 < z < 6
U = 1 (3.9)

1, z > 6

To obtain the equations for the perturbation flow we substitute Eqs. (3. 7)

into (3. 4)-(3. 6). The result for the linearized perturbation quantities is

iku + Uux + wU' (z) = - x (3.10)

ikw Uw = - p (3.11)

x zux +Wz = 0 (3. 12)

Note that this step introduces a nondimensional parameter, k, the reduced

frequency,

k = wL/u (3.13)

We will assume for the moment that k = 0(1) indicating that the order of magni-

tude of the time dtrivntiv.e is nf onmnprabhle siz n the space derivatives. We

shall consider the limiting case as k - 0 in a separate section.

The set of governing equations can be reduced to a single equation for

w by elimination of the pressure between (3.10) and (3. 11) and by using (3. 12) to

eliminate u. The result is as follows:

2A
DV w - U"(z)w x= 0 (3.14)

where

D = ik + UB /x
(3.15)

V = 82/x2 + 2/ z2

The boundary conditions at the oscillating surface and at large distances

from the surface must be specified. Since we are neglecting viscosity in this

formulation we apply the inviscid tangency condition at the surface. The

linearized condition is

Sikt
w = Dz s(x) on z =Ez s(x)e (3.16)
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This condition can be transferred to the mean surface z = 0 by expanding w

and U in a Maclaurin series about z = 0 and retaining only the terms of 0(1).

The res ult with the additional information that

U(0) = 0 (3.17)

is

w(x, 0) = ikzs(x) (3.18)

It is interesting to note that this result is the same as the linearized form of the

no-slip condition for w in viscous flow. The other boundary condition which

must be satisfied is the vanishing of disturbances at infinity; that is,

w = 0 as z -. m (3.19)

We shall find it necessary to impose additional conditions at the interface be-

tween the boundary layer and the outer flow, and these will be discussed in the

course of the solution.

Once the transverse velocity component, w, has been determined, the

perturbation pressure may be obtained by integrating the transverse momentum

equation with respect to z as follows:

A CA

p(x, 0) =JDwdz (3.20)

The perturbation at infinity is assumed to be zero. The pressure at z = 0 is

equal to the surface pressure in the linearized theory so that the evaluation of

the integral in (3. 20) gives the surface pressure perturbation.

3.3 SOLUTION

We seek the solution of Eq. (3. 14) subject to the boundary conditions

(3. 18) and (3. 19) and the assumption (3. 9) regarding the z-variation of U. It

is convenient to consider the boundary layer and the outer flow regions separately.

When considering the boundary layer it is appropriate to introduce a transverse

coordinate based on the boundary layer thickness as a reference length; that is,
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z*= z/60 (3.21)

where z is the nondimensional transverse coordinate and 6 is the nondimen-
0

sional boundary-layer thickness. Introducing Eq. (3.21) in (3. 14) we obtain the

following equation:

2^
D(WzZ* + 6 Wxx) - U"(z*)wx = 0, 0 < z* < 1 (3.22)

We can approximate the equation by neglecting the term of 0(6 2) which is a
0

higher order term due to the assumption in Eq. (3.3). This is consistent with

the boundary-layer assumption that transverse variations are much greater

than longitudinal variations in the boundary layer. In mathematical terms this

is equivalent to expanding w in a power series in increasing powers of 6 and

truncating the series after the term of 0(6 ). The approximate equation which

applies only within the boundary layer is thus

A A

Dwz*Z* - U"(z*)wx = 0, O < z* 5 1 (3.23)

Outside the boundary-layer region we assume that the x and z derivatives

are of comparable orders of magnitude. The shear velocity, U, is constant

so that U" is zero. This simplifies Eq. (3. 14) as follows:

D w = 0, z Z 6o (3.24)

where

D = ik + /ax

It can be demonstrated that the perturbation velocity components obey Laplace' s

equation in the outer flow region if, in addition to the condition of incompressi-

bility, it is assumed that the flow is irrotational. Then we have instead of Eq.

(3. 24) the following equation:

W = 0 (3.25)

The solution of Eqs. (3. 23) and (3. 25) subject to the conditions (3. 18) and

(3. 19) is accomplished by employing Fourier integral transformation on x. This
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reduces the partial differential equations to ordinary differential equations in z.

If we define the Fourier transform of the transverse velocity as follows:

wv(a, z) = (x, z)e-iaxdx (3.26)

then transformation of (3. 23) and (3. 18) yields the following problem for the

boundary-layer region:

(k +aU)w *z* - aU"(z*)W = 0, 0 s z* < 1 (3.27)

W(a, 0) = ikZ s(a) (3.28)

where ILs(a) is the Fourier transform of the surface amplitude function, z (x).

Note that Eq. (3.27) can be written as an exact differential as follows:

d/dz* ((k +aU)2 d/dz*[V/(k +aU)J) = 0 (3.29)

Integration of (3. 29) twice with respect to z* yields the following:

v/(k +aU) = Af(k +aU) 2 dz* +B (3.30)

where the unknown constants of integration, A and B, are functions of the

parameter a. One of these functions can be determined by satisfying the boundary

condition (3. 28), which yields

z*

w = i(k +U) (z - iAf (k +aU)-2 dz* O z* 1 (3.31)

The function A will be determined by matching this solution with the outer flow

solution at z* = 1.

We treat the outer flow by employing the Fourier transform. The trans-

formed version of Laplace' s equation is

2-
w -a w = 0, z ; 6 (3.32)

zz o

A solution to this equation which satisfies the condition (3. 19) of vanishing

velocity perturbations at infinity is
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w=w le z o

or (3.33)

- a o(60(Z*-l)
w = wle , z* > 1

The two unknown functions A and w 1 may be determined by imposing two con-

ditions at the interface between the boundary layer and the outer flow. The

conditions are that w~ and wz* should be equal at z* = 1. These conditions

require that the velocity perturbations and, hence, the pressure perturbations,

be continuous at the interface. The result of imposing these conditions with

U' (1) = 0 is as follows:

A= - Soi ja (k +o) 2 [1 +o ja I(k +) 2F(a, k)]-1s(a) (3.34)

2- -1-
1 = i(k +a)[1 +o la ((k +a) F(a,k)J z-S(a) (3.35)

where

1

F =f(k +aU)-2dz*

We are interested in the solution for small 8 . We can obtain the first
0

two terms of the power series expansion of w in powers of 6 by expanding0
the binomial in (3.34) and (3.35) as follows:

[1 + 6o a I((k +a) 2 p(a, k)]- 1 = 1 - oI lcY(k +a) 2 i + 0(0 a 3 1) 2  (3.36)

We can neglect the remainder in the above expansion provided

3-
16 a3F(a , k) I << 1 (3.37)

This condition is satisfied when 6o is small, provided the combination a 3F

is not large. We will assume for the moment that k = 0(1) and that a is suf-

ficiently small so that the inequality in (3.37) is satisfied. Note that for k

approaching zero the integral P becomes large in magnitude. The steady flow

limit will be considered in a later section. The assumption of small a is
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equivalent to one of gradual variation in the surface perturbations and restricts the

theory to exclude rapid variations of the surface amplitude function zs(x). The

small perturbation expansion (3. 36) with the limitation (3. 37) yields the following

approximate result for the velocity perturbation to 0(60) in the boundary layer:

z*

w = i(k +aU)[1 - 8 la(k +a) (k +aU) -2dz*z (a) (3.38)

0

The expression (3.38) evaluated at z* = 1 is equivalent to the expansion of w1

to 0(80), namely,

Wl = i(k +a)[1 - o a I(k +a)2 F(, k)],s(a) (3.39)

The Fourier transform of the surface pressure perturbation given in (3. 20)

is

p(, 0) = i(k +aU)wdz* (3.40)

0

The evaluation of this integral is facilitated by dividing the range of integration

into two parts

6
O 

p(a, 0) = i (k +aU)wdz +i(k +a) ;wdz (3.41)

o 6
0

Substitution for w using (3. 38) and (3.33) yields

1

p(a;0) = - 6 k +aU)2 dz*zs + i(k +a)v1/ a +0(6 82) (3.42)

0

Substitution for w 1 using (3. 39) and rearranging gives
11

p(a;0) = - (k +a) z/ a ] +  [ (k +aU)2 dz* +(k +a) 4 F(a,k)lz

o
(3.43)

+0(6 )0
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The first term in the above expression is the potential flow pressure which one

would obtain if there were no boundary layer and the mean velocity were constant

throughout the flow (see Appendix B). The term of 0(6 o) is the effect of the mean

boundary layer shear flow on the pressure, and the two expressions within the

parentheses in (3. 43) can be interpreted individually. The first term represents

the effect of w-variations within the boundary layer, while the second expression

gives the effect of w-variations in the boundary layer which appear in the outer flow

by virtue of the interface conditions. We have been able to include this latter

effect by simultaneously determining the boundary layer and outer flow perturba-

tions.

3.4 AN ALTERNATE FORMULATION

The result of the previous section can be obtained using a slightly different

approach which will be employed in the extension of the present problem to treat

the effects of viscosity and compressibility. This approach might have some

general utility in handling other problems involving perturbations of a mean shear

flow. The starting point for this formulation is the set of governing equations,

(3. 10)-(3. 12), for the perturbation quantities and the associated boundary condi-

tions, (3. 18) and (3. 19). Consider the flow in the boundary layer. Using (3. 11)

the transverse pressure gradient in terms of the boundary-layer coordinate

defined by (3. 21) is as follows:

z= - D (3.44)

This implies that z*-variations of the pressure are of 0(6 o) so that within the

boundary layer the pressure is of the form

p = Po(x) + 6oPBL(x, z*) +... (3.45)

where Po(x) is the inviscid surface pressure perturbation as determined from

the potential flow over the oscillating surface. Now if we differentiate (3. 10)

with respect to x and use (3. 12) to eliminate u we obtain
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Dw* - U' (z*)w = 6 (3.46)

Substituting for p using (3.45) and neglecting the terms of 0(62) we obtain the

following equation which is equivalent to the momentum equation under the

boundary-layer assumption of negligible transverse pressure gradient

Dw - U' (z*)wx = 5o"() (3.47)

This can be simplified by the introduction of the streamline deviation,

6(x, z, t), which is related to the perturbation velocity component, w. The

perturbed flow streamlines are given by z = constant +6 (x, z, t). The condition

that this surface be a stream surface is the condition of flow tangency:

DF/Dt= 0 on F = 0 (3.48)

where

D/Dt = /at + . grad

F = z - (constant +8)

With velocity components given in (3.7) and assuming 6 is of the form

6 = E6 (x, z)ekt (3.49)

condition (3. 48) yields the following equation neglecting terms of 0(E2):

v = D6 (3.50)

If this result is substituted in (3.47) a simplified momentum equation is obtained:

2- 11
D286z = 6oP(x), 0 z* g 1 (3.51)

In the outer flow 6 satisfies Laplace' s equation as in the previous formula-

tion:

V25 = 0, z* Z 1 (3.52)

The boundary conditions, (3.18) and (3. 19), in terms of 6 are

6(x,0) = z (x)

and
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S=0 as z - 0 0  (3.54)

The linearized surface pressure perturbation is given by (3. 20) using (3. 50) as

follows:

00

p(x, 0) =fD26dz (3.55)

o

The solution for 6 is obtained by Fourier transformation on x. The

boundary-layer equation for 5 becomes

6z* = 6o0 a(k +aU)-2po(a), 0 < z* < 1 (3.56)

with

(a;;0) = z (a) (3.57)

where the Fourier transform of 6 is defined as

^ -iax
(a;z*) 6 (x, z*)e dx (3.58)

An integral of (3. 56) subject to (3. 57) is

z*

= zs(a) + 5oa2po(a)f(k +aU)-2dz*, 0 z* s 1 (3.59)

o

The outer flow problem for 5 yields a solution satisfying (3. 54)

-Ia l(Z-6)
6= 1e z 6 (3.60)

or (3.60)

S-alo0 (z* -l )

S= e , z* 1

where 61 is obtained by evaluating the boundary-layer solution (3. 59) at z*= 1.

Thus,

6 = z +6 ap F(a, k) (3.61)
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Having obtained a solution for 5 we can determine the surface pressure

by taking the Fourier transform of (3. 55)

p(oz;O) = -(k +oU) 26dz (3.62)

o

Dividing the range of integration, using (3. 59)-(3. 61), and neglecting terms of

0(82), we obtain the following expression for the pressure:

p(;O0) = po() +0 (k + aU)2 dz* + (k +oa)4F(a, zs() (3.63)

where

2-
Po = -(k +a) zs ()/!JI (see Appendix B).

This result duplicates that given by (3.43). The solution is somewhat less

cumbersome than the method employed in the previous section, and the formula-

tion emphasizes the boundary-layer nature of the problem. The present method

will be useful for most unsteady flow situations but some caution must be

exercised in interpreting the result for steady flow. The integral F(a, k) is

singular for k = 0. This case will be discussed in a later section.

3.5 INVERSION OF THE FOURIER INTEGRAL TRANSFORM OF THE SURFACE

PRESSURE PERTURBATION

In order to determine the x-dependence of the surface pressure amplitude

we must invert the Fourier transform expressions given by (3.43) or (3. 63).

This results in an expression of the form

p(x, 0;k) = po(x;k) + 6o BL(x;k) (3.64)

The inviscid pressure po is determined using linearized potential flow theory

and can be obtained either by inversion of the Fourier transform Po or by

superposition of sources on the x-axis. It is more convenient to use the source

potential; for example, the surface pressure on a finite-chord panel is (see
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Appendix B)

1

S= - (ik +d/dx)2  Jlog x -x 1 Zs(xl)dx 1 , 0 x 1 (3.65)

0

The unsteady boundary-layer effect PBL(x) is determined by inversion of

the term of 0(6 o) in the Fourier transform of the surface pressure in (3. 63). It

is convenient to treat the two parts of this term separately; that is, in terms of

the Fourier transform

PBL ( ) = P 1 (a) +P 2 (6) (3.66)

where

1

P1 = -f(k +aU) dz*zs()

0

4,
P 2 = (k +a) F(o, k)zs(l)

The inversion of pl produces the result

S = (ik) z (x) +2ikbz'(x) +cZ"(x) (3.67)

where

1

b = Udz*

0

1

c = U2dz*

0

The inversion of p2 yields for the finite-chord panel

x

P 2 =fK(x - x 1 ;k)(ik +d/dx 1)4 s(l)dx1  (3.68)

where
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1

K(x;k) = -x U-2e-ikx/Udz*, x > 0 (3.69)

0

The kernel, K, is convergent if k has a negative imaginary part which need

only be infinitesimal in magnitude. In this case the integrand in (3. 69) has a

finite value at the lower limit of integration notwithstanding the fact that U(0) is

zero. Appendix C presents details of the inversion of the Fourier transforms

giving p 1 and p2 .

3.6 THE LIMITING CASE OF STEADY FLOW

Let us consider the limit as k - 0 which reduces the problem to steady

flow over a rigid wavy wall. We expect that there will be perturbations in

pressure due to the steady boundary layer and we would like to specialize the present

theory to treat this case. The motivation for considering the steady flow limit is

the existence of several experimental studies of surface pressures for steady flow

over sinusoidal wavy walls. This would provide a direct comparison of the theory

with experiment.

If the kernel function in (3. 69) is evaluated for k = 0 the result is a singu-

lar integral. Recall that in the formulation for small 5 the assumption that

k = 0(1) was required in the series expansion of the expressions for w. For the

case where k - 0 the neglected terms are not insignificant. For this case the

expressions in (3. 34) and (3.35) must be used in conjunction with (3. 31), (3. 33),

and (3. 40) to give for the transform of the surface pressure

(k +a)2/ a +60a2H1(c ) +62 (k +a)2N2(c )

p(;0) =- N2  () (3.70)
[1 + o(k +a)02Kl()/ oa ] s

where

1

H1 (c) =f(U - c) 2 dz*
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1 1

N2 (c) =f(U - c) 2 f (U - c)- 2 dz*dz*

o z*

1

K1(c) =J(U - c)-2dz*

where

c = - k/a

The integrals in (3. 70) arise also in the theory of hydrodynamic stability. See,

for example, Lin (1955). We will restrict discussion to the case where a = 0(1),

that is, gradual variations in the surface deformations. For small values of c

the integrals H1 (c) and N2 (c) are 0(1), while the integral Kl(c) is 0(c-1).

To see that this is the case note that the contribution of the inner integral in N2 (c)

becomes large in the interval near z* = 0, but the factor (c - U)2 is small in

this interval and tends to make this part an unimportant contribution to N2(c ) .

Integration of the expression for K1 (c) by parts yields

Kl(c) = - 1/(U' (O)c) + O(log c) (3.71)

With this information the surface pressure in (3. 70) becomes

p(a;0) = kU' (0)zs(a)/(6 a) (3.72)

This gives zero pressure in the limit as k = 0 for finite S and U'(0) which

indicates that the theory does not give physically meaningful results for steady

flow. The same conclusion was reached by McClure (1962) who developed a theory

for calculating the pressure on a surface with infinite traveling waves. His theory

gives zero pressure for an inviscid fluid model (similar to the present theory)

for the case of steady flow. One explanation for the failure of the inviscid fluid

model for the steady case is the neglect of the viscous stress in the problem for

the perturbation flow. To see that this is the case let us examine the perturbation

momentum equation, (3. 10), for flow near the surface. With (3. 17) and (3. 18)

we see that near z = 0 for k = 0 the inertial terms on the left-hand side of (3. 10)
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are zero leaving nothing to balance the pressure-gradient term on the right-hand

side of the equation. This leads us to conclude that for the case where k is small

we must include the perturbation viscous stress in the boundary layer, at least in

the vicinity of the surface.

In light of the present discussion we can indicate the minimum amount of

flow unsteadiness for which the inviscid theory presented here is applicable. The

condition in (3. 37) which is required for the small perturbation expansion of (3.36)

can be recast using (3. 71) for small k as follows:

6 o02/(U ' (0)k) << 1 (3.73)

For the case of gradual variations in surface deformation; that is, for a = 0(1),

we may simplify (3.73) to

6 << U' (0)k (3.74)

For example, for a turbulent boundary layer with S = 0.10 and U'(0) = 100

(3. 74) requires that k be much larger than 10- 3 for the theory to be applicable.

We conclude that the theory should apply to most unsteady problems except those

for which k is very small. The correction of the present theory due to the

effects of the viscous stress in the perturbation flow is the subject of the next

chapter.
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IV. THE EFFECT OF VISCOSITY

4.1 INTRODUCTION

In the previous chapter we developed a theory for the unsteady boundary

layer by considering the boundary layer to be an inviscid shear layer of constant

thickness. The effects of viscosity were neglected and only indirectly taken into

account to the extent they affect the boundary-layer thickness or the mean shear

profile. We found that this theory is inapplicable for very small frequencies,

however.

In the present chapter we consider the effect of including the viscous stress

in the problem for the perturbed flow. We will determine the surface pressure

perturbation for the case of finite but large Reynolds number and reduced fre-

quency assumed to be of order unity. Such an analysis is useful for understanding

the limit as k - 0.

4.2 FORMULATION; OUTER EXPANSION; BASIC INVISCID FLOW

Consider the problem of flow over an oscillating surface and assume that

the discussion of Section 3. 1 is applicable. In the present analysis we assume

the existence of a boundary layer of constant thickness adjacent to the surface.

We assume that the flow may be decomposed into a mean flow and a perturbation

flow as in (3. 7). We take the boundary-layer assumption that the pressure varia-

tion across the layer is negligible so that we may eliminate the transverse

momentum equation (3.11). We then have the linearized longitudinal momentum

equation and the continuity equation, (3. 10) and (3. 12), but now with viscious terms

retained. In nondimensional variables the boundary layer equations are

1 A
iku +U6 +wU'(z) - p' (x) +- (4.1)x Re zz

ux + = 0 (4.2)

where Re = u L/v is the Reynolds number based on the reference length L.

The surface boundary condition for viscous flow is the no-slip condition which

is a requirement that the fluid velocity equal the velocity of the oscillating
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surface at the point of contact between the fluid and the impermeable surface. In

terms of the two velocity components we must require that

u=0

and (4.3)

w=.z s/t on z= z s(x,t)= Es(x)ei kt

The linearized conditions may be obtained using (3. 7) and by expanding the velocity

components in a Maclaurin series about z = 0. This gives

d(x, 0) = - z U' (0) (4.4a)
S

w(x, 0)= ik2s(X)  (4. 4b)

It is convenient to introduce the stream function O(x, z) for which the

continuity equation (4. 2) is automatically satisfied. Thus

(4.5)

w x

Introducing the boundary-layer coordinate defined in (3. 21) and the stream function

from (4. 5) in the momentum equation (4. 1) we obtain

ikz , * + Uxz* - U' (z*)x = - f(x) + 1/R4 z* * 0z*, 0 z* 1 (4. 6)

2
where R = Re62 and where f(x) = 6 o' (x). The no-slip conditions require

o O

z*(x, 0) = - U' (O)Zs(x) (4.7a)

x(x,0) = - ikzs(x) (4.7b)

We seek an asymptotic solution as the Reynolds number R becomes

infinite. Hence, an (outer) expansion of the form

O(x, z*;R) , 61 (R)0 1 (x, z*) + 62(R)0 2 (x, z*) +... (4. 8)

is sought as R - a with x, z* > 0 fixed. By substituting into the full problem

and taking the limit as R - c, we find that in the limit 61 may be zero, infinite,

or finite. If 61 is zero we find that 01 is infinite so the problem is meaningless.

If 61 is infinite the problem is homogeneous and the solution is 0 1 = 0. A
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significant result is obtained only if 61 is finite. Without loss of generality we

may set

61(R) = 1 (4.9)

The equation for the first approximation then becomes that for the inviscid shear

layer,

ikz + U - U' 1x = - f(x) (4. 10a)
lz* 1xz*

x(x, 0)= - ikis(x) (4. 10b)

The no-slip condition (4. 7a) has been dropped because it is unenforcible in the

outer approximation. The order of the differential equation has been reduced to

first order with the neglect of the viscous term, and consequently we can retain

only one boundary condition. Note that the problem for 01 is equivalent to the

problem for 8 posed in (3. 51) and (3. 53). The boundary condition for lx(x, 0)

is equivalent to the linearized form of the tangency condition for inviscid flow, yet

we obtained it from the no-slip condition (4. 3).

In an analogous manner as before we can obtain a solution to (4. 10) by use

of the Fourier transform ~1(a;z*). The problem for 1 is

lz* - [aU' /(k +aU)I 1 = if(a)/(k +aU) (4. 11a)

01(; 0 ) = - (k/ca)Z s(a) (4. 11b)

where f(ac) = 5l o( a) = - 6o(i a/laf)(k +a)2zs is the transformed potential flow

pressure gradient. A solution to the inhomogeneous first-order ordinary dif-

ferential equation (4. 11a) subject to the boundary condition (4. 11b) is

z*

1 = - (k +aU)s/ + i(k+cU)' (k +aU)-2dz* (4.12)

Taking the inverse transform and evaluating at z* = 0 we have

*(x, 0)= - U' (0)zs(x) - f(x)/ik (4.13a)
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x

01 (x,0) = - ikfs(x)dx (4.13b)

Comparing (4. 13a) to the no-slip condition (4.7a) which was dropped in the formu-

lation of the first outer problem we find that the boundary condition is incompatible

with the outer problem.

4.3 INNER EXPANSION; INNER BOUNDARY-LAYER EQUATIONS, MATCHING;

BASIC INNER FLOW

The loss of the highest derivative in (4. 6) is the classical hallmark of a

singular perturbation problem (refer to Chapter 7 of Van Dyke (1964)). We know

that the basic inviscid solution for the shear layer is not valid near the surface,

where the no-slip condition had to be abandoned. There is a region of nonuniformity

near the surface. The width of this region of nonuniformity (the inner boundary

layer) is of order 5i(R), where 6i is a function that vanishes as its argument

becomes infinite. We can obtain coordinates of order unity in this region by

magnifying the z*-coordinate, leaving x unaltered. An appropriate magnified

(inner) normal coordinate is given by Z = z*/.i(R), where the stretching factor

1/6i(R) is still to be determined. We assume that for large finite values of R

corresponding to most practical problems the amplitude of the surface perturba-

tions, E, will be small compared to 6.. This permits the continued use of the
1

linearized boundary conditions (4. 4) imposed on the surface z* = 0.

We consider stretching in the inner region. Note that within the region of

nonuniformity we can approximate the mean shear profile as linear, taking only the

first term in a Maclaurin series expansion for small z*. Then in terms of the

magnified coordinate we have approximately

U = 8.U' Z
iw

and (4.14)

U' = U'
w
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where U' = U' (0). Introducing this result in (4. 6) and using the stretched
w

coordinate we have

ik z/ i+ U' (Zx - ) = - f(x) + 1/(R6 )ZZZ (4.15)

x(x , ) = - ik s(x) (4. 16a)

4z(x, 0) = - 6.U's(x) (4. 16b)

We can specify the stretching which will display the proper behavior of the stream

function in the inner boundary layer. There are several alternatives. If we choose

6. =R - 1/3 (4.17)

then we have three possibilities depending upon the magnitude of the parameter

= kR 1/ 3 . If the parameter P is large or infinite we have an uninteresting case

in which there is no effect of the viscous stress term and the lowest order inner

solution is one for which OZ = 0. If the parameter is small or zero we have a

case in which the effect of theut-term in the momentum equation is negligible.

The interesting case in the present context is the one in which P N 0(1). In

this condition all of the terms in (4. 15) are of order unity and the two boundary

conditions (4. 16a) and (4. 16b) contribute to the same order. The inner problem

becomes

'ZZZ - ip~i Z - Uw(ZOxZ - Ox) = f(x) (4.18)

Cx(x , 0) = - 6U. is(x)
(4.19)

z(x 0) = - 6iU' zs(x)

This corresponds to small reduced frequency approaching the limit of steady flow

as R approaches infinity. Unfortunately, an analytical solution of (4. 18) is not easily

found. An additional problem associated with this case and with the case for which

P - 0 is the singularity of the basic inviscid (outer) flow as k - 0. This prevents

matching the inner solution and the basic outer solution of (4. 13). The nature

of this case is such that the region of nonuniformity is not confined to a small

portion of the shear layer but rather it pervades the entire outer boundary layer.

This will become clear by an alternate specification of the stretching.
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If we choose

6. = R1/2 (4.20)

and consider the case k - 0(1) we can rewrite (4. 15) as follows:

ZZZ - ikpz = Si[f(x) + U (ZixZ - x) l  (4.21)

We assume an inner expansion, valid within the inner region, of the form

O(x, z*;R) - A1(R)YI1 (x, Z) + A2(R)Y2 (x, Z) +..- (4.22)

as R -. c with x, Z fixed. We determine A, by substituting this expansion

into (4. 21) and (4. 16) and letting R tend to infinity. This gives
1/2

fIZZZ - ik~YiZ = Lim [1/(R 1/2)]f(x) (4.23)
R-*=

(x,0) = - Lim(1/A)ikz (x) (4. 24a)
R-Co

1/2
SZ(x, 0) = - Lim[l/(R 1/2)]U'2(x) (4. 24b)

R- 1 w

The limit appearing in (4. 23) and (4. 24b) may be infinite, finite, or zero. The

first two possibilities lead to degenerate solutions that cannot satisfy the inner

boundary conditions. We choose the third possibility and take

z(R) = 1 (4.25)

Equation (4. 23) for the first term of the inner expansion becomes

T1ZZZ- ikl lZ= 0 (4.26)

The inner boundary conditions (4. 24) become

yix(, 0) = - ikzs(x) (4. 27a)

S1Z (x , 0) =0 (4. 27b)

We need an additional boundary condition to make the problem for 1 complete.

We obtain this by applying the asymptotic matching principle to y; for the inner

expansion to 0(1) and the outer expansion to 0(1) [equation (5. 24) in Van Dyke

(1964)] as follows:
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Outer expansion to 0(1): 1 (x, z*) (4. 28a)

rewritten in inner variables: = 1(x, Z/R) (4. 28b)

expanded for large R: = 01 (x, 0) +(Z/R)lz*(x, 0)+... (4. 28c)

inner expansion to 0(1): = 1 (x, 0) (4. 28d)

Inner expansion to 0(1): 0T 71(x, Z) (4. 29a)

rewritten in outer variables: = tl(x, \/z*) (4. 29b)

expanded for large R: = I1(X, ) + Rz* 1 Z(x,) +" " (4. 29c)

outer expansion to 0(1) = Vz*,z (x, c) + 'y(x, W) (4. 29d)

Equating the two final results gives the matching condition

SY1Z(x, ' ) = 0 (4.30)

We can obtain a solution to the problem for y1 stated in equations (4. 26), (4. 27),

and (4.30). With ul =Y 1 (x, Z) equations (4. 26) and (4.30) become

ulZ Z - ikul = 0 (4.31)

u 1 (x, 0) = 0

(4.32)
u1 (X, ) = 0

This is a completely homogeneous problem for ul with solution ul(x, Z) = 0.

Thus 'T1(x, Z) = Y1 (x). From (4. 27a) we find that

x

(X) = - ik zs(x)dx (4.33)

4.4 THE SECOND TERM IN THE INNER EXPANSION

The standard matching order of steady flow boundary-layer theory re-

quires that we proceed to the second term of the outer expansion after having

determined the first term of the inner expansion, a. term of 0(R- /2). In the

43



present problem we have found that the first term of the inner expansion is 0(1),

so that we should perhaps call that the "zeroth order" term and refer to the next

term in the inner expansion as the first order term. Thence, we proceed to the

second term in the inner expansion. We determine the nature of the gauge func-

tion A2(R) together with the matching conditions by matching the inner expansion

to 0(A2) with the outer expansion to 0(1). We find

Outer expansion to 0(1): 1 0 1,(X, z*) (4. 34a)

rewritten in inner variables: = 1(x, Z/ F) (4. 34b)

expanded for large/-: = b1(x, 0) +(Z/N/FR)Olz*(X, 0)+. .. (4. 34c)

inner expansion to 0(1/R): = 0 1 (X, 0) 4 Z/rR) lz*(x, 0) (4. 34d)

rewritten in outer variables: = 41 (x, 0) 4 z* 1 z*(X, 0) (4. 34e)

Inner expansion to 0(A2): 0, l(x) + A2Y2(x, Z) (4. 35a)

rewritten in outer variables: = 'I(x) + A 2Y2(x,'Rz*) (4.35b)

expanded for large FR: = pl(x) + 2[ 2 (x,C)

(4.35c)
+ Vz* 2 Z(x,) +... ](4. 35c)

We apply the asymptotic matching principle equating the inner expansion to

0(1/R) of the outer expansion to 0(1) with the outer expansion to 0(1) of the

inner expansion to 0(42). We see that A2(R) must be some multiple of R-1/2;

we choose

2 = R-1/2 (4.36)

Continuing from (4. 35c) we have that the outer expansion to 0(1) of the inner

expansion to 0(1/-R) is given by

0 = ,1(X) + z* '-2 Z(x,' )  (4.35d)

Comparing (4. 34e) and (4. 35d) and using the results of the previous section we find
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that

Y2 Z(x ' ) = 3l1z * ( x , 0) (4.37)

From (4. 13) we find that this becomes

T Z(X, ) = - U' (x) - f(x)/ik (4.38)

Substituting the inner expansion (4. 22) into the full equation (4. 21) produces

an inhomogeneous equation for 2

y2ZZZ - iky Z = f(x) + U' ( Z' - lx )  (4.39)

We can simplify the equation by substituting for y 1 using (4. 33). Hence

yZZZ - iky2 z = f(x) + ikU' Z (x) (4.40)
2ZZZ 2Z ws

Similarly, for the inner boundary conditions we find

Y2x(X, 0) = 0 (4. 41a)

S (x , 0) = - U' (x) (4. 41b)

We can obtain a solution to the problem posed by (4.40), (4.41) and (4.38).

With u2 = Y2 Z equations (4. 40), (4. 41b), and (4. 38) may be rewritten as

u ZZ - iku 2 = f(x) + ikU'2Zs(x) (4.42)

u (x, 0) = -U' z (x) (4.43)

u (x, m)= - U' (x) - f(x)/ik
2 ws

We can make (4.42) homogeneous by setting

u = - f(x)/ik - U' Z (x) +v(x, Z) (4.44)
2 ws

The problem for v becomes

vZZ - ikv = 0 (4.45)

v(x, 0) = f(x)/ik (4.46)

v(x, c) = 0

A solution of (4. 45) satisfying (4. 46) is easily constructed and gives

u = - U' (x) - f(x)(1-e kZ)/ik (4.47)
2 w45
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Integrating (4. 47) by parts with respect to Z and evaluating the function of

integration using (4. 41a) we obtain the second term of the inner expansion

-ikZ 3/2
Z2(x, Z) = - (f(x)/ik +U' u (x)) Z + f(x)(1-e )/(ik) (4.48)ws

We can form the two-term inner expansion of 0 using (4. 22), (4.25),

(4. 33), (4. 36), and (4. 48). Rewriting in outer variables and taking x and z*

derivatives, we have the inner representations

bx N - ikz (x) - (f' (x)/ik + U' (x)) *

(4. 49a)

+f' (x)(1 - e z*)/(ik) R3/2

z* ~- U z(x) - f(x)(1-e- iz*)/(ik) (4. 49b)

Note that the inner representation satisfies the no-slip boundary conditions (4. 7)

at z* = 0. Note also the exponential behavior of the inner representation within

the region of nonuniformity. Examining the exponentials we find that the decay

constant is the reciprocal of a characteristic length of magnitude 1/(kR) 1 / 2

Hence, for k approaching zero the characteristic length becomes infinitely

large for large fixed values of R. This indicates a failure of the expansion scheme

in his limit. For k - 0 we expect the region of nonuniformity to grow so that we

can no longer characterize the boundary layer as an outer inviscid region and an

inner viscous region. Insteady the entire boundary layer experiences the effects

of viscosity.

4.5 THE SECOND TERM IN THE OUTER EXPANSION

The nature of the gauge function 62 (R) together with the matching condi-

tions is determined by matching the inner expansion to 0(1/ R) with the outer

expansion to 0(62). Using all previous results we find

Inner expansion to 0(1/i/R): b I'Yl(x)+(l1/JR) 2 (x, Z) (4. 50a)

Substituting for Y1 ' I2 using (4. 33) and (4. 38):

46



X

= - ik Fs dx+(1/'R/)[- (f(x)/ik + U' Z (x))Z
s ws

(4. 50b)

+ (f(x)/(ik)3/2)(1-e- Z

rewritten in outer variables:

x

= - ikfz dx+(1/ -R)[- (f(x)/ik +U'I^ (x)) R- z*

(4. 50c)

+(f(x)/(ik)3/2)(le- ikRz* )]

expanded for large R:

x

= - ikf dx - (f(x)/ik + U' Z (x)) z *+ (1/-)f(x)/(ik)3 / 2 +... (4. 50d)

outer expansion to 0(1/\R):

x

= - ik dx - (f(x)/ik +U' Z (x ))z * +(1/ R-)f(x)/(ik)3/ 2  (4. 50e)
s ws

-00

rewritten in inner variables:

x

= - ik ddx-(Z/r'TXf(x)/ik +Uw s (x))+(1/v -)(x)/(ik)3/ 2  (4. 50f)

Outer expansion to 0(82): p '0 i 1 (x, z*) +562 2 (x, z*) (4. 51a)

rewritten in inner variables: = 21 (x, Z//-i) + 8 22 2 (x, Z/JR) (4. 51b)

expanded for large R:

= 4l,(x, 0) +( Z/R)lz*(x, 0) +. - . + 62 [ 2 (x, 0) +** * (4.51c)

substituting for 01 using (4. 13):

x

-ikf dx-(Z//-)(f(x)/ik + Uws(x)) +62(x, 0) + (4.51d)
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Comparing (4. 50f) and (4. 51d) shows that 82 (R) must be some multiple of
-1/2

R ; we choose

= R- 1/2
62 = R (4.52)

Using this result we find the inner expansion to 0(1//R) of the outer expansion to

0(1/,fR):

x

= - ikf Z^sdx-(Z/Vr)(f(x)/ik +U' (x))+(1/'-ri) 2 (x,0) (4.51e)

It then follows that

b2 (x, 0) = f(x)/(ik)3/2 (4.53)

Substituting the outer expansion (4. 8) into the full equation (4. 6) yields a

homogeneous equation for 02'

ik 2x* + U 2 xz* - U' 02x = 0 (4.54)

The problem for 02 is given by (4. 54) and (4. 53). Taking the Fourier transform

of these equations we find

2z* - [aU'/(k +aU)] 2(a;z*) = 0 (4. 55a)

2(a;0 ) = f(a)/(ik)3 / 2  (4.55b)

A solution to (4. 55a) satisfying (4. 55b) is

2 = i(k +aU)(a)/(ik)5/2 (4.56)

Hence, upon inversion

02 = (ik + Ud/dx)f(x)/(ik)5/2 (4.57)

We can also form the two-term outer expansion of q, although it is more

convenient to work directly with the Fourier transform

48



Z*

= - i(k +aU)z s(a)/(ia) +i(k +aU)fJf (k +aU)-2dz*

(4.58)

R-1/2 (ik)5/2], z* 1+R /() , Oz*<1

4.6 SURFACE PRESSURE

The pressure is determined from the outer flow solution in the same manner

as discussed in the previous chapter. Recall that

1 o

p(a;O) = 5J' (ik +iaU)wvdz* +i(k +a)6 fw dz* (3.41)

o 1

where w, the Fourier transform of the wv-velocity component, can be obtained

from (4. 58) for the boundary layer, and (3. 33) for the potential flow. Thus

z*

(ik+ iaU) (1-5 o(a2/ (k +a)2[ (k +aU)-1dz

0

v = - i= + R-1/2/(ik)5 / 2 ] (a), 0 z* 1 (4.58)

--la8 (z*-1)
wle , z*>1

where

w1 = w(a;1) = i(k +a) - o ak +a)2 [(k +eU) 2 dz*

0

-1/2 5/2 s

Substituting in (3.41) and neglecting terms of 0(6 ) we find

~ -1/2-
p(o+;0) = p + oPBL + R Pv (4.59)

where the first two terms are identical to the result obtained in the previous

chapter: Po is the potential flow pressure and PBL is the pressure due to the
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effect of the shear layer (the effect of the first term in the outer expansion for the

boundary layer). See, for example, (3. 43). The remaining term in (4. 59) is the

effect of including viscous stress in the perturbed flow (the second term in the

outer expansion) and is

4 5/2
Pv = (k +a) 2 (a)/(ik) (4.60)

The inverse transform yields

A -1/2.p(x, 0) = po(X) + 5o BL() + 6oR p p(x) (4.61)

where po and pBL are given in Section 3. 5 and where

v (x) = (ik +-d/dx)4 s(x)/(ik)5/2 (4.62)

An alternate way to express this result is as follows:

-1/2.
p(x, 0) = o(x) + oPBL(x ) + Re 1/2(X )  (4.63)

where Re = U L/v. By introducing the Reynolds number based on reference

length L (see (4. 6)), we have clearly separated the viscous effect from the

effect of the perturbation due to the inviscid shear layer.

4.7 DISCUSSION

We can estimate the relative importance of the viscous effect and the

effect of the shear layer. For the case where k - 0(1) we find that

IRe 12p/6oPBL I 0(Re 1/2/ o )  (4.64)

assuming p and pBL are both 0(1). For the case of a typical boundary layer
-1 6 -2

with 6 = 10 and Re = 10 the ratio is equal to 10 . The viscous effect is

practically negligible compared to the effect of the shear flow. For sufficiently

high Reynolds numbers and for boundary layers that are not too thin we find that

the effect of including viscous stress in the perturbed flow is negligible provided

that the flow is sufficiently unsteady.

It is interesting to see the effect of flow unsteadiness as compared to vis-

cosity. In terms of the Fourier transforms we find
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(U/(6 k 3/2Re /2)) as k-O0

-1/2- (4.65)
Re P/6oPBL *- 5/2 1/2 (4.65)

0(1/(6 k Re )) as k - co

As k -- 0 we find that the effect of including the viscous stress becomes more

important and the character of the flow changes. The nonuniformity grows and

the effects of viscosity are experienced throughout the shear layer. For k - 0(1)

or greater we find that the viscous effect is negligible.
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V. EFFECTS OF THE TURBULENT REYNOLDS STRESSES

5.1 INTRODUCTION

The aim of this chapter is to assess the role of perturbations in the back-

ground Reynolds stresses in modifying the pressure perturbations on an oscil-

lating surface. The intent is to formulate the problem for the case of two-

dimensional incompressible flow including the effects of the turbulent fluctuations,

to discuss the problem of closure of the set of equations, and to make a coarse

estimate of the effect rather than to obtain an accurate solution. In formulating

the problem we draw on the methodology of the preceding two chapters where the

effects of turbulence were neglected entirely in the perturbation flow. In that

formulation the effect of turbulence is assumed to play an indirect role and is

exhibited by the choice of an appropriate mean velocity profile for turbulent flow.

Benjamin (1959) and Miles (1957) have proposed the use of a turbulent mean

velocity profile in a small perturbation theory for the shear flow over a surface

with traveling waves. McClure (1962) discussed some of the conceptual difficulties

that arise in such an analysis, including the fact that there is no sharp critical

layer (where U(z) = c) in turbulent flow. He formulated the problem for a turbu-

lent shear flow over a perturbed surface and proposed a solution analagous to the

laminar case. Based on an experimental study of supersonic flow over a rigid

wavy wall he concluded that one can use the mean quantities for flow over an

unperturbed surface if the amplitude of the surface disturbances is sufficiently

small. We will use this result in the present analysis and assume that the mean

profile is essentially unaffected by the small-amplitude wavy surface.

5.2 FORMULATION

The theoretical foundations for the treatment of a periodic disturbance

in a turbulent shear flow have been presented by Hussain and Reynolds (1970)

and others and we shall draw heavily upon their work for the present section.

They propose that the flow variables may be decomposed as the sum of three

contributions. For the velocity and pressure fields they write
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ui = Ui +U +u! (5. la)

p = +P 4p' (5. 1b)

where (-) is the mean value at the location (x,y,z), ( ) is the statistical con-

tribution of the periodic disturbance, and ( )' is the background turbulence

fluctuation. They define the time average of f(', t), where f is a flow field vari-

able, as

T

f(1f) = lim 1/T f f(, t)dt (5.2)

and, the phase average of f as

N

(f(, t)> = lim 1/N f(i, t +nT) (5.3)
N-ro

n=l 1

where 7 is the period of the perturbation wave. The background turbulence is

assumed to be random and its contribution to the phase average of a large

ensemble is therefore zero. Hence, the perturbation f is defined by

(f) =f+? (5.4)

The governing equations for the perturbation waves, the mean field, and

the turbulence fluctuations can be obtained by substitution of the decompositions

(5. 1) into the continuity and momentum equations (the Navier-Stokes equations).

Assuming the density and viscosity to be constant, normalizing the variables on

a suitable characteristic length L and velocity u , and appropriately averaging

andmanipulating the resulting equations Hussain and Reynolds obtain equations

for the mean field, the perturbation equations, and the turbulence equations. We

quote their result for the perturbation equations

i/x i = 0 (5.5)
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Zi/)t +ii.i. j +uj = - P/)x i +1/Re x

I (5.6)

+/ xj(~ u - uu(( u') - uu )
1 1 3 3 1i3j - j 1 3

where Re = u L/v is the Reynolds number. Note the appearance of the last

term in (5. 6) involving the difference of the phase and time averages of the

Reynolds stress of the background turbulence. With the definition (5. 4) one can

look upon this difference as the oscillation or perturbation of the background

Reynolds stress. Accordingly, we define

r = (uu -U! u (5.7)
j13 1 3 j

As there is presently no theory available for determining iij a closure problem

arises. This is discussed in Section 5.3.

Prior to consideration of the closure problem let us specialize the formula-

tion for waves of small amplitude by neglecting the terms quadratic in U.i in (5. 6).

The term involving rij remains to be specified. Consider a parallel mean flow,

i. = (U(z), 0, 0), and specialize to two-dimensional flow for which ui = (, 0, w).

Assume that the perturbation quantities may be represented as

f= d(x, z)eikt (5.7)

where E is the small-amplitude parameter defined in Chapter 3, and where

f represents the complex amplitude of the relevant quantity T, and k is the

reduced frequency of the oscillation. Substituting (5.7) for the perturbation

quantities in (5. 5) and (5. 6) we obtain

u + w =0 (5. 8)
x z

iku +Uux +vU' (z) =- x +1/ReV u a /xx - rxz/az (5.9)

ikv + U x 
= -Pz + 1/ReV2^v - ^xz /x - rzz/z (5.10)

The boundary conditions are the no-slip conditions at the surface

z= z (x, t) = Zs(x)e (5.11)
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and vanishing disturbances at infinity. The linearized forms of the surface con-

ditions are given by (4.4); namely,

u(x, 0) - U' (0)z (x) (5. 12a)

(x, ) = iks (x) (5. 12b)

5.3 CLOSURE OF THE SET OF GOVERNING EQUATIONS

There are several possibilities for evaluating the turbulent stress perturba-

tions. One straightforward method is to derive an equation for .. by manipulating

the Navier-Stokes equations (see, for example, Hinze (1959)). Using this ap-

proach Hussain and Reynolds (1970) obtain an equation that is linear in the ...

They claim that it is futile to seek closure through this equation because of the

appearance of still unknown terms on the right-hand side. Recently Davis (1972)

has proposed a way out of this dilemma by relating the unknown terms on the

right-hand side of this "stress conservation equation" to the quantities r.. and

u.. He suggests a relation on the basis of dimensional arguments and uses this

model to compute the flow over a wave. A shortcoming of his approach is the fact

that only one boundary condition can be applied at the surface indicating that this

closure scheme with its associated approximations does not adequately model the

flow.

Another possibility is to apply the concept of an eddy viscosity, or perhaps

a combination of an eddy viscosity and the elastic behavior of turbulence, to the

flow over an oscillating surface. Hussain and Reynolds (1970) propose that the

Reynolds stress perturbations are related to the wave strain rates by

rij = - 2Esij (5. 13a)

where

s.. = 1/2(ii/Ux. + a-./x.) (5. 13b)

and where the kinematic eddy viscosity E(z) is viewed as a property of the mean

velocity field and is presumed known. Following Hussain and Reynolds, Davis (1972)
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proposes a model based on the assumption that the turbulent stress of a fluid ele-

ment is determined by the rate of strain it has recently experienced. If the "memory"

of the fluid is long, the constitutive relation will be that of a viscoelastic fluid;

however, if the memory of the fluid is short, the turbulent stresses will be primarily

determined by the local rate of strain and the fluid will behave in a viscous manner.

In the limit of zero memory the relation proposed in (5. 13) is recovered. Davis

found that such eddy viscoelasticity models are strongly dependent on the details

of the mean velocity profile very near the surface since the value of the horizontal

velocity component u at the surface is determined by U' , the gradient of the

primary flow at the surface, as indicated in (5. 12a). Davis compared results based

on this model with the field measurements of Dobson (1969) and found that the sur-

face pressure predicted by the eddy viscoelasticity models is in reasonable agree-

ment with experimental values. He found little difference in the results depending

on the assumption that the fluid has a finite memory or zero memory. Hence, we

will use the case of zero memory and assume an eddy viscosity relation of the

form given by (5. 13).

5.4 AN APPROXIMATE ANALYTICAL SOLUTION

In order to proceed with the solution of (5. 8)-(5. 10) subject to (5. 12) and

the closure assumption (5.13) we need to make some additional simplifying assump-

tions. In the previous chapters we postulated the existence of a thin boundary

layer near the wavy surface where the x-derivatives are small in comparison to

the z-derivatives and where the z-pressure gradient is assumed to be negligible.

Under these assumptions the z-momentum equation, (5. 10), becomes trivial, and

we find that the only important Reynolds stress in the remaining momentum equa-

tion is the shear stress which can be written nondimensionally as

r = Eu (5.14)xz z

where

E = E/u L = E/Re

Substitution in (5.9) gives the boundary-layer momentum equation
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ikU +Uu +vU' (z) = - ^' (x) +1/Re[Izz +(Ez) z] (5.15)

The continuity equation and boundary conditions are as before

(u + w = 0 (5.16)
x z

s(X at z= 0 (5.17)

= ikz (x)

As in the previous chapters we assume that these equations apply within the

boundary layer, 0 < z s o , and we assume that the flow is inviscid and irrota-

tional outside the layer, governed by equations (3. 19) and (3. 24).

Considering the boundary-layer problem we introduce in (5. 15) the stream

function defined in (4. 5) and the z*-coordinate defined in (3. 21) to obtain

iko Z* +Uz* - U' (z*)Ox = - f(x) +1/R[hpz* z*z +(E z z*,)z], (5.18)

0 z* 1

where R and f are defined in (4. 6). The no-slip conditions (5. 17) are

at z* = 0 (5.19)

= - ikzs(x)

Note the similarity to the problem posed in (4. 6) and (4. 7) for the laminar case;

the presence of the term in E(z*) complicates the turbulent case.

It is instructive to consider the variation of E(z*) in the boundary layer.

Near the wall E is extremely small indicating that the laminar stress dominates.

As z* increases E begins to grow rapidly as the effect of the turbulence begins

to dominate over the effect of the viscosity. Near the outer edge of the boundary

layer E may be 10-100 times as large as v. In predictions of steady turbulent

boundary layers one postulates a suitable expression for the eddy viscosity; for

example, one can take the model of Van Driest (1956) for the wall region
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E = (kz )2 [1 - e /A ] 2 u/z+ (5.20)

where

z =u z/v, u =U/u ,

u = 7w/p,

and k, A are constants, and match this to some estimate of the eddy viscosity for

the outer portion of the boundary layer through an equation of the form

E = KRe * (5.21)

We could use expression (5. 20) for the present study, but this requires precise

knowledge of the primary velocity gradient in the wall region. The complexity of

the expression prevents a straightforward analytical solution.

One way out of this difficulty is to take E = constant. We can assume that

E is approximately 10-100. In this case equation (5. 18) reduces to the laminar

form with the Reynolds number replaced by an effective Reynolds number based

upon an enhanced viscosity; that is,

Re = R/(E +1) - R/E (5.22)

This would reduce the Reynolds number in (5. 18) by a factor of 10-100. We still

have a small parameter multiplying the highest derivative in (5. 18) which gives

rise to a singular perturbation in very much the same manner as with the laminar

viscous term. We can solve the problem by introducing a thin "eddy viscous"

layer near the wall. The width of this region is of order 6i(Re). In analogy to

the laminar case we stretch the z -coordinate by a factor 1/5. and choose

6. = (R ) (5.23)

This permits us to replace the Reynolds number R with the effective Reynolds

number R in all of the results given in Chapter 3.

e

58



5.5 EFFECT ON THE SURFACE PRESSURE

It is possible to obtain an estimate of the effect of the constant eddy

viscosity on the surface pressure. We can employ the result in (4. 63) to give

p(x, 0) = Po(x) + 60 BL(x) + (Re)e /2EV(x) (5.24)

where

Re = u L/(E +v) a Re/E,
e

and where

E (x) = (ik +d/dx)4s(x)/(ik)5/2 (5.25)

is taken from (4. 62). The subscript "EV" refers to "eddy viscous" and implies

the dominance of the turbulence over the effect of viscosity.

We can estimate the relative importance of the eddy viscous term compared

to the other terms. For k - 0(1), 8 = 10 - , Re = 10 , E = 10-100, we find,

using (4. 64), that the eddy viscous term is about .03-. 10 times the inviscid shear

layer effect. This indicates that the effect of the Reynolds stress perturbations

is smaller than the effect of the shear flow, though it is not negligible. For the

largest value of the eddy viscosity, E = 100, we find that the shear term is about

10 times larger than the eddy viscous term in (5. 24). For decreasing flow unsteadi-

ness, as k - 0, we find from (4. 65) that the effect of the eddy viscosity becomes

more important.

5.6 DISCUSSION

The approximate analysis of the previous two sections gives us an assess-

ment of the importance of including the Reynolds stress terms in the perturbation

equations for the boundary layer over a wavy surface. We find that for sufficient

flow unsteadiness the effect of including the Reynolds stress perturbations is small

but not negligible. As in the case of laminar flow the analysis breaks down when

the flow unsteadiness diminishes. For a more accurate analysis employing variable

eddy viscosity E(z) one would have to resort to a numerical analysis of the

governing equations with an assumed eddy viscosity or some other appropriate
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closure assumption for the perturbation Reynolds stresses. This approach was

taken by Hussain and Reynolds (1970), Saeger and Reynolds (1971), and Davis

(1972), but the whole question is still somewhat inconclusive as Davis indicates.

For the present work it was decided that a numerical analysis including the Reynolds

stresses was beyond the scope or intent of this study. The significant effect ap-

pears to be the perturbation due to the mean shear profile. For the application to

panel flutter the Reynolds number and reduced frequency will be roughly equal to

the numbers used in the estimates of the previous section, so that we can expect

the relative importance of the Reynolds stresses to be about the same as indicated

for the incompressible analysis. One should not conclude, however, that the role

of the Reynolds stresses is not very important in the problem of the wind-driven

water waves. For geophysical flows there is no boundary-layer thickness and the

only characteristic scale is the height above the boundary. For this reason one

must work directly with the Navier-Stokes equations (5. 8)-(5. 10) in such a case,

and the effect of including the Reynolds stresses may be quite significant. We

will discuss this further in the section on wind-driven water waves in Chapter 8.
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VI. EFFECTS OF COMPRESSIBILITY

6.1 INTRODUCTION

In the previous chapters we have considered several aspects of the incom-

pressible flow over an oscillating surface. Examined separately were the effects

of an inviscid shear flow, the result of including viscous effects in the perturbed

flow, and the effect of the turbulent Reynolds stresses on the perturbed flow. We

have established that for sufficient flow unsteadiness the inclusion of the Reynolds

stresses has a small effect on the pressure. The most important effect in the

perturbed flow appears to be due to the mean shear profile. We assume that the

relative importance of these three effects is the same for compressible flow. In

this chapter we consider the two-dimensional compressible inviscid shear flow over

an oscillating surface by extending the method developed in Chapter 3 for the

incompressible case.

6.2 FORMULATION

The formulation of the problem of two-dimensional compressible flow

over an oscillating surface closely parallels the formulation of Section 3. 4 in

which we consider the shear layer to be a thin boundary layer. Assume that the

remarks made in Section 3. 1 apply to the present case. We assume that the fluid

is a perfect gas with constant specific heats and consider the dimensional form

of the equations for two-dimensional inviscid flow. The continuity equation is

)p/ t + b (pu)/ax + a(pw)/az = 0 (6.1)

The two components of the momentum equation are

p(ut +uux +wu ) = - p (6.2)

(wt +uwx +ww ) = - p (6.3)

If the equation of mechanical energy is subtracted from the equation of conserva-

tion of total energy we obtain the equation which describes the rate of change of

the internal energy

pcv(T t +uTx +wT) = - P(Ux +w ) (6.4)

61



We complete the set of equations with the equation of state

p = pRT (6.5)

As in Chapter 3 nondimensional variables are employed using freestream values

for the flow quantities. Thus,

x = x/L u =u/u P= P//p

z = z/L w = w/u T = T/T (6.6)

t = u t/L P = P/(p 2 )

using the same symbols rather than introducing new ones. We represent the

flow quantities as the sum of a mean flow quantity and a small perturbation. In

terms of the nondimensional variables

u = U(z) + e(x, z)eikt

ikt
w = w(x, z)e

p = p(z) +E(x, z)e i kt (6.7)

p p(Z) + E(X, z)eikt

ikt
T = T(z) + ET(x, z)e

Using the boundary-later approximation for the mean flow we note that

p = constant since bp/bz = 0 (6.8)

This leads to the equation of state for the mean flow in nondimensional variables

pT = 1 (6.9)

The total enthalpy is conserved for a fluid particle in the mean flow. We can

express this form of the conservation of energy in terms of nondimensional

variables as

T +(y - 1)/2 M2 U2 = 1 +(y- 1)/2 M2  (6.10)
CO cc

where y = c / c is the ratio of specific heats, and M is the Mach numberp v
of the freestream. The mean flow is completely specified by Eqs. (6. 8)-(6. 10)

once the details of the velocity profile, U(z), are known.
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We can now proceed to derive the equations for the perturbation flow.

Nondimensionalizing Eqs. (6. 1)-(6. 5), substituting the flow quantities (6. 7), and

neglecting the terms of 0(E 2), we obtain the linearized equations

ik+U +p(u + )+ p' (z)= 0 (6.11)
x x z

ik^ +Uu +vU' (z)= -x/p (6.12)
x x

ik + U = -W /p (6.13)

x
ikT +UT +wT' (z)= - (y - 1)(fx + Z) (6.14)

^/p +T/T = yM2 p (6.15)

The surface boundary condition is the same as in Chapter 3. The flow obeys the

tangency condition at the surface

z = E (x)e ikt (6.16)

and the linearized form of this condition is

w(x, 0) = ik ̂ (x) (6.17)

Another boundary condition must be applied far away from the surface. In the

case of subsonic disturbances, the velocity perturbations are zero at infinity,

while in the case of supersonic disturbances where the solutions are wavelike,

the condition requires that the disturbances radiate outwards from the surface

to infinity.

As in Chapter 3 we can obtain a single governing equation for the

w-velocity perturbation. It is convenient to treat the boundary layer and the

outer flow separately. In the boundary layer we assume that the pressure

gradient in the z-direction is 0(0 ). This leads to the approximation

p = Po(x) + 8 OPBL(X, z) (6.18)

where Po is the potential flow pressure and pBL is the perturbation due to

the boundary layer. In the analysis of the boundary layer equations we assume
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that the pressure amplitude is approximately equal to po. The governing equa-

tions (6. 11)-(6. 15) are then

D^/p + (Ux +Vz) 4( ' (z)/p)w = 0 (6.19)

Du^ + U' (z)i = -P (x)/p (6.20)

Dt/T +(T' (z)/T)i = - (y - 1)(^ +W z) (6.21)

p/p +T/T= M (6.22)

where D = ik + U(z) /bx. Here we have used (6.9) in eliminating pT in the

energy equation. We next add (6.19) and (6.21) and substitute for Dp/p +DT/T

using (6. 22). We operate on the resulting equation using D, then eliminate

Dix from the resulting equation by differentiating the momentum equation (6. 20)
x

with respect to x and substituting for Dii . This results in an equation for w
x

DA - U"v +1/y(p'/p +T'/T)Dwv = 1/p~b' - M D (6.23)
z x o 0

We can introduce the streamline deviation, 6, from the relation developed in

Chapter 3,

w = D6 (6.24)

Substituting in (6. 23) we obtain

D28 6+(1/)(p' /p +T' /T)D26 =[(1/p)d2/dx2 - M2D2] (x) (6. 25)

The surface boundary condition (6. 17) in terms of 5 is

6(x, 0) = z (x) (6.26)

Note the similarity to the incompressible case. If T and p are both constant

and M = 0 in (6. 25) we recover the incompressible equation for 6.

Consider now the outer potential flow in which all of the mean flow quantities

are independent of z. The linearized perturbation equations (6. 11)-(6. 15) are

DP + (U + w) = 0 (6.27)
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Du = -px (6.28)

Dw = - Pz (6.29)

DT = - (y - 1)(Ux +W )  (6.30)

p + T = yM2 (6.31)

where D = ik + b/bx. We can use these equations to obtain an equation for w.

First we add (6.27) and (6.30) and substitute for DA +DT using (6.31). We

differentiate the resulting equation with respect to z and eliminate pz using

(6.29). We now have an equation in u and w. To eliminate u we assume that the

outer flow is irrotational, that is,

U = w (6.32)
z x

Differentiating (6. 32) with respect to x and substituting for u in the equation
xz

involving U and w we obtain

V2 ^ 2 2A
w - M2D2w = 0 (6.33)

Introducing the streamline deviation using (6. 24) we obtain

D(V 2 8 - M2D2) = 0 (6.34)

Assuming 6 = 0 for all the streamlines far upstream we conclude that the

quantity in the parentheses in (6.34) is zero for all the fluid. Thus,

V2S - M2D26 = 0, z 60 (6.35)

Expanding the operators in (6. 35) we obtain

2 2 22ikM2  2 2
(M - 1)6 - +2ikM - kM 6 = 0 (6.36)

xx zz ax

We recognize that this equation for 6 is the same as the equation for the

amplitude of the perturbation potential in linearized potential flow.

We obtain the pressure by integrating the z-momentum equation (6. 13).

Assuming p is zero at infinity we have
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o
p(x, 0) =J'pDwdz (6.37)

Introducing w^ from (6. 24) and separating the range of integration into two parts

we have
5

o co

(x, 0) = pD dz +D 6dz (6.38)

o 6
0

where we have used the fact that p and D do not vary with z in the outer flow.

6.3 SOLUTION

We use the Fourier transform to obtain the solution of the problem formu-

lated in Section 6. 2. The technique is an extension of the method developed in

Chapter 3 for the incompressible case. It may here be convenient also to take

the alternate view that the Fourier transform is the solution due to an infinite

traveling wave train of phase velocity c = k/a. Consider the boundary layer

for which the transformation of (6. 25) and (6. 26) yields

z +P(z)6 = Q(0o;z), 0 z < :o (6.39)

(a;o) = 2 (a) (6.40)

where

P(z) = (1/Y)(p' /p + T' /T)

Q (a;z) = [a2p l(k +cU)-2 M 2I] (a)

and where :s and Po are the Fourier transforms of the surface amplitude and

potential flow pressure amplitude respectively. We recognize that equation (6.39)

is a linear, first-order ordinary differential equation in the independent variable,

z, with the transform variable a as a parameter. The solution to this equation

subject to the boundary condition (6. 40) is

66



Z*

= +8 [a2 - (k +aU)-2dz* - M2z*Pg , 0 O z* < 1 (6.41)
S 0 O 0

0

In obtaining the solution we have used (6.9) to eliminate pT. Note also that we

have expressed the result in terms of z* to emphasize that the z-variation of

6 is contained in the perturbation term of 0( 0).

The outer flow equation (6. 35) transforms as

- X2g = 0, z 2 6 (6.42)
zz o

where X2 = 2 - M 2 (a +k) 2 . The general solution to (6.42) is

S Az -Az 2
S= Ae + Be , A > 0 (6. 43a)

or

8 = Ce il z +De - i -z, 2 <0 (6.43b)

depending upon the particular value of a. In order to specify the constants in

the general solution we should consider separately two cases depending upon

whether the freestream is subsonic or supersonic relative to the wave.

In the subsonic case (M < 1) it is convenient to set

2 -= 1)( - 2)  (6.44)

where

P2 = 1 - M2

Y = kM /(1 - M )

2 = - kM/(1 + M)

This simplifies the problem of choosing the appropriate form of the solution in

(6. 43) which applies for a given value of o. We note that (6. 43a) is appropriate

for a > Re(y 1 ) or a < Re(,Y2). The nature of this solution is "subsonic" and we

conclude that A must be zero for the solution to be finite at infinity. This is

similar to the incompressible case. If a lies in the range Re(y2 ) <a < Re(yl),

then (6. 43b) is appropriate for the solution which has a "supersonic" character.
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We choose C = 0 to satisfy the radiation condition of waves propagating outward to

infinity. It is interesting to note that this "supersonic" disturbance attenuates to

zero at infinity if we assume that k is complex with a negative imaginary part.

We can summarize the solution for a subsonic freestream as

-X(z-60)
6= 5 1e , a < Re(y 2 ) or a> Re(y 1 ) (6.45)

with the understanding that X = i4 when Re(y 2 ) <a < Re(y 1 ). We specify 61
by evaluating the boundary layer solution (6.41) at the edge of the layer. This

gives

1

S2 1 -2 2-
= + 6 [a2 p (k +aU) 2 dz* - M ]p (6.46)

1 s 0 o

In the case of a supersonic freestream (M > 1) it is convenient to

consider (6. 42) as follows:

2 +g = 0 (6.47)zz

where

a =  2(a - 1)( a - 2)  X

and where

B2 = 2 1

and

1 , T2 as defined in (6. 44)

The general solution to (6. 47) is

ioz -iz 2
6 = Ae + Be , a > 0 (6.48a)

or

Ce~ Ce +De-r, a = - <0 (6.48b)

As in the case of a subsonic freestream, the general solution can be specialized

by the same arguments relating to finiteness at infinity for "subsonic" disturbances

and outward propagation in the case of "supersonic" disturbances. The solution
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which satisfies these conditions and matches the boundary-layer solution at the

interface is

-r(z-6 )
= 81 e  Re(y 1 ) <a < Re(7 2 ) (6.49)

with the understanding that 7 = icy when a < Re(Y1) or a > Re(2 ). 61 is given

by (6. 46).

6.4 THE SURFACE PRESSURE

Having determined the solutions for the streamline deviation we can calculate

the surface pressure amplitude using (6.38). The Fourier transform of that

expression is

1

o 5
0

Substituting for 6 using (6. 41) in the first integral and (6. 45) and (6. 49) in the

second integral we obtain

1

- p(k +aU)2dz* - (k +a) 2 1/ + 0(6 ), M < 1

0

p(a;0) = 1 (6.51)

-6  P(k + aU)2dz*s - (k +a) 21/7 +0( ), M >1
O

where the terms of 0(6 2) arise from the z-variation of 6 in the first integral.

We substitute for 61 using (6. 46) and we obtain an expression for po by

evaluating (6. 50) for 60 = 0 with 8 from (6. 45) or (6. 49). Neglecting the

terms of 0(6 ) we obtain
0

p(a;0) = po +oBL (6.52)

where

2-
- (k+a) z /X, M <1

s co

P (k +a) s/, M >1
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PBL= Pl +P2

where

1

S= -p(k +aU)2dz*zs
0

(k +a)4(a~2 -1(k +aU)-2dz * - Mbs/X2 ,  M <1
1

P2 = 01
4 2 -1 -2 2 2

k +a) ( J (k +U) dz* - M 0 / , M >1

0

Note that we can write a single expression for p2 for both subsonic and super-
22 2 22

sonic freestream since T = - a = X . Substituting for X using (6. 44) we obtain

4 2 - -2 2
(k + Y) (a (k +aU) dz* - M )zs

p (6.53)2 (1 - M2)(a - )(a - Y2) 6 . 53)

The physical counterparts of these expressions can be obtained by inver-

sion of the Fourier transforms in (6. 52). Thus

1(x, 0) = Io(x) + 5o BL(x) (6.54)

The potential flow pressure, po, may be obtained more conveniently by other

means owing to the difficulty of inverting the Fourier transform. In the case of

supersonic flow the problem of determining the potential flow pressure proves

quite tractable. A particularly efficient approach employing Laplace transforma-

tion on x (see Section 13.3 of Ashley and Landahl (1965)) yields the following

result for a finite-chord panel located between x = 0 and x = 1:

x

° = 1/B Ko(x - x;k, M)(ik +d/dxl) 2 s(xl)dx1  (6.55)
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where

-ikM 2x/B 2

K ( x;k, M) = e O J o(kM x/B

and

B= (M 2 -1) 1 / 2  M> 1

The pressure due to the boundary layer, PBL' may be obtained by inverting

the Fourier transforms in (6. 52) and (6. 53), (see Appendix D). This gives

PBL(X) = pl(x) +P 2 (x) (6.56)

The first term is due to the effect of perturbations within the boundary layer and

is given by

A 2A
P = (ik) az (x) +2ikbz' (x) +cz"(x) (6.57)

where

1 1 1

a =fpdz*, b =fpUdz*, c = pUdz*

o o o

We can relate the mean flow density profile to the shear profile using (6. 9) and

(6. 10). This gives

p = [1 + (y - 1)/2 M 2 (1 - U2)] -1 (6.58)

The second term in (6. 56) is due to the effect of the boundary layer on the

outer flow. We can express this by a convolution integral. For the case of a

surface deformation which extends to infinity on the x-axis,

P2 =JK(x - x;k, M )(ik +d/dx 1) 4s(xl)d 1 (6. 59a)

and for a finite-chord panel located between x = 0 and x = 1,

1

P2 = K(x - 1;k, M)(ik +d/dxl) Zs(x)d 1 (6. 59b)
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where

1

K(x;k,M ) = p-1U-2F (X, U;k, M )dz* +K 2 (x;k, M)
1o

The functions, Fl and K2, are the result of inverting the Fourier transform

in (6. 53). Expressions for these functions are given in Appendix D for both

subsonic and supersonic flow. We note here that the most significant difference

in the results for these two cases is that in the supersonic case the kernel, K,

exhibits the property of no upstream influence. For this case the function K

is zero for negative values of the argument x - x 1 and we may replace the

upper limit in the integral in (6. 59) with x. Another interesting property of the

kernel function is the fact that the function is well-behaved in the transonic limit

as M - 1. Apparently the essential nonlinearity of steady, two-dimensional

transonic flow disappears in the oscillatory case when k is sufficiently large.

We obtain the same result as M -. 1 using the expressions for subsonic or

supersonic flow. This serves as a partial check on the algebra. Finally, we

note that in the limit as M -, 0 we obtain the incompressible result of (3. 69)

which serves as an additional check.

6.5 DISCUSSION

The limits of applicability of the present theory can be ascertained by

examining the consequences of the assumption that 8 is small. The first-

order analysis will be applicable provided the boundary-layer perturbation

pressure is small compared to the potential flow result, that is,

16oPBL/ << 1 (6. 60)

This will occur for flow that is sufficiently unsteady. To determine the degree

of flow unsteadiness that is required consider the Fourier transform expressions

in (6. 52) and (6. 53). We observe that D2 becomes large for small k so that

this is the dominant part of the boundary-layer effect for small k. With this

understanding we find that condition (6. 60) is approximately

72



6 0 F(d,k)
o << (6.61)

BN[(a - 71)(a - 2)

where

1

F(a, k) =f -1(k +aU)-2dz*

For small k, F(a, k) - 0(1/(akU' (0)) so that condition (6. 61) is

6 3
0 << 1 (6.62)

kU' (0)B(a - 1 )(a - 2)

Consider the case of low supersonic flow for which y 1 and 72 are 0(k).

Assuming gradual variations in the surface so that a - 0(1) we have the condition

6 /(kU' (0)B) << 1 (6.63)

which is similar to condition (3. 74) in the incompressible case. For transonic

flow y ~ 0[k/(M - 1)] and y2 ,O0(k). In the limit as M -, 1 with k small

but nonzero we express condition (6. 62) as

3/2
6 /(k U' (0))<< 1, MO - 1 (6.64)

This relation gives the minimum amount of flow unsteadiness reiiired in order

that the theory apply for transonic flow. Using the numbers in the example at
-2

the end of Chapter 3 we find that k must be larger than 10-2 in transonic flow,

that is, a slightly larger amount of unsteadiness is required in this case than in

the incompressible case or in the case of low supersonic flow.
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VII. THREE-DIMENSIONAL COMPRESSIBLE INVISCID SHEAR FLOW

OVER AN OSCILLATING RECTANGULAR PANEL

7.1 INTRODUCTION

In the previous chapter we considered the two-dimensional compressible

inviscid shear flow over an oscillating surface, obtaining expressions for the

perturbation surface pressure. We extend the analysis to treat the flow over an

oscillating rectangular panel to obtain an expression for the surface pressure as a

function of the panel transverse displacement. This expression could be of use

in an investigation of panel flutter.

Refer to Fig. 7. 1 where we have a thin rectangular panel of chord length

L and span b performing transverse oscillations of the form

iwt
z(x, y, t) = az s(x, y)e (7.1)

As in the previous chapter the flow is in the x-direction and the boundary-layer

thickness is constant. We assume that

E = a/L << 1,

6 = 6 /L << 1, (7.2)
o b. 1.

and

E o

7.2 FORMULATION

The formulation of the three-dimensional case closely parallels the

treatment of the two-dimensional case given in the previous chapter. In terms

of the Cartesian coordinate system of Fig. 7. 1 we have the three-dimensional

version of the complete set of governing equations, a modified version of the

equations (6. 1)-(6. 5). These are the equations of continuity, the three-component

equations of motion, the energy equation, and an equations of state for a perfect

gas:
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FIGURE 7,1
FLOW OVER AN OSCILLATING RECTANGULAR PANEL

AND DETAILS OF THE SHEAR LAYER MODEL
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Pt +(PU)x +(pV) +(PW)z 0 (7.3)

p[Ut +uu +VUy +WUz] = - Px (7.4)

p[Vt +uv x +VVy +wvz]= -py (7.5)

P[wt +uw x +vwy +ww ] =-p z (7.6)

pw[Tt +uT +vT +wT ] = - p(ux +v +w ) (7.7)

p = pRT (7.8)

We nondimensionalize lengths by L, velocity components by u , time by

L/u , and the remaining variables as in (6.6) and assume that the nondimensional

flow quantities may be represented as in (6. 7) with the modification that the

perturbation variables depend upon x, y, and z. Thus

u = U(z) + 'E(x, y, z)eikt

A ikt
v = ev(x,y, z)e

w = v(x, y,z)eikt

p =p(z) +El(x,y, z)e ikt (7.9)

p =p(z) +Ep(x,y,z)eikt

ikt
T = T(z) +ET(x, y,z)e

The mean flow is completely specified by (6. 8)-(6.10), since it depends only upon

the transverse coordinate, z. We obtain the equations for the perturbation

flow by substituting (7.9) in the nondimensionalized version of (7.7)-(7. 8) and

linearizing

ik +U$ + p(+ + 1 ) +^p' (z)= 0 (7. 10)
x x y z

ikf + UGx +yU' (z)= - Px/p (7.11)

ik^ + U x = - y/p (7.12)

ik ̂  + UVx =  z/P (7.13)
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ikT +UTx +wvT' (z) = - (Y-1)( x + + z)/P (7. 14)

2A
p/p +T/T = YM (7.15)

We consider the boundary-layer flow and the potential flow separately as

in the previous chapter. For the boundary layer we assume that the perturbation

pressure is approximately

S= Po(, y) + oBL(x, y, z) (7.16)

which is equivalent to (6. 18). For the analysis of the boundary-layer equations

we neglect the second term and assume that p is given by o(x,y), the potential

flow pressure at z = 0. This approximation leads to a governing equation for 6w

after manipulating the equations as in the previous chapter:

,2 2^
Dwz - U' (z)Wx+(1/y)(p'/p + T'/T)Dwv=(1/p)(o +Po )-M D Pxx yy

(7. 17)

Note the similarity to (6. 23), the only difference being the additional term in

PO in the present case. For the tangency condition at the surface
yy

S ikt
Z = Ez (x, y)e (7. 18)

we have, upon linearization,

w(x, y, 0) = ik s(x, y) (7. 19)

Introducing the streamline deviation, (6. 24), in (7. 17) and (7. 19) we obtain
2^ 2. 2 2 2 2 22D2 6 z +1/(p'/p +T'/T)D 6 = l/( 2/x2+ /2 y )-M D ]o(x, y)

(7.20)

6(x, y, 0) = zs(x,y) (7.21)

For the potential flow in which the mean flow quantities are constant we

manipulate the equations (7. 10)-(7. 15) as in the previous chapter assuming in

addition that the flow is irrotational so that
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a = v (7.22)
z x

and

V =w
z y

The assumption of an unperturbed flow far upstream leads to

26- M2 D2 = 0, z (7.23)
O

This result is identical to (6. 35) with the understanding that now

2 =2 /2 2 y2 +2/z2 (7.24)

The boundary conditions for the potential flow are the condition that the perturba-

tions diminish at infinity for subsonic disturbances and that the condition of

outward radiation applies for the wave-like supersonic disturbances.

The perturbation pressure is obtained by integrating (7. 13) with respect

to z. The result is identical to (6. 38)

5
O 0

p(x,y,0) =f pD 2 dz +DJ2 6dz (7.25)

o 6

7.3 SOLUTION

In the previous chapter we obtained solutions for the two-dimensional

case in terms of a Fourier transform on x. We generalize that technique to the

present case by employing Fourier transforms on x and y. For any perturba-

tion quantity f the Fourier transform is defined as follows:

f(a,p;z) = f(x,y, z)e-iX-i dxdy (7.26)

-GO

We can reduce (7.20) and (7. 23) to ordinary differential equations in z.

Transforming the boundary-layer problem, (7. 20) and (7. 21), we obtain

z +P(z)6 = Q(a, P;z) (7.27)
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6(o, 9;0) =  's(a, P) (7.28)

where

P(z)= (1/)(p'/p + T' /T)

2 2-1 -2 2
Q(oa, p;z)= [(01 + )p (k +aU) - M ]p (a,p)

Noting the similarity to (6. 39) we obtain a solution similar to (6. 41):

z*

0<z <1

We treat the potential flow problem, (7. 23), by transforming on x and

y and obtaining

62 + = 0, z 6 (7.30)
zz o

where

S=M (a +k) -_ (a + 2) (7.31)

Assuming for the moment that k is purely real, we can express the general

solution of (7. 30) as

iaz -i c z 2
S=Ae +Be , > 0 (7.32a)

or

z + -z, 2  2
= Cerz +DeZ, 0= -7 < 0 (7.32b)

We can specialize the general solution by considering the boundary conditions.

Let us assume that the freestream is supersonic. We can express (7. 31) as

0= 2D(Y) - 2 (7.33)

where

2 = B 2 (a - Y1)( - 2

The parameters B, y1, and Y2 are defined in the previous chapter. The
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solution (7. 32a) corresponds to the case of supersonic disturbances and the re-

gion of validity is a region in the o-f plane for which the expression in (7. 33)

is positive. We choose A = 0 to satisfy the radiation condition. For the case

of a subsonic disturbance we take the solution in (7. 32b) and note tha.t the region

of validity in the a-B plane consists of the points for which the expression in

(7. 33) is negative. We choose C = 0 in order to satisfy the condition of

vanishing disturbances at infinity. In summary we have

-icr(z-6 o )

6 = 61(a, )e , 2 (a, #) > 0 (7. 34a)

2 = 61(, 0)e < (7.34b)

where 91 is the boundary-layer solution, (7.29), evaluated at z* = 1. We can

follow a. similar line of reasoning to obtain the solutions for the case of a subsonic

freestream

-X(z-6) )0) 2
6= e , A >0 (7. 35a)

-ip(z-5)  2 2
8 = 1e , A = - < 0 (7. 35b)

7.4 SURFACE PRESSURE

We use the previous results in conjunction with (7. 25) to obtain an expres-

sion for the surface pressure transform. The transformed expression of (7. 25) is

1

;0) = - k + oU)2 6dz* - (k 4ct) 2 f 6dz (7.36)

o 6

Substituting for 6 using (7. 29) and either (7. 34) or (7. 35), neglecting terms of

order (86 ), we obtain the result to first order in 6
o o

p(a, ;0) = po(, ) + VoPBL(a, 8) (7.37)

where
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2~
- (k +c) zs (O, 9)/, MW < 1

0 2
- (k +o!)2 s (Y, )/", M > 1

BL 1  2

1

Pl = -0 (k +aU)2 dz*zs(y, ~)

1

2 (MZ ( , )2= - 1/a 2( , 4)(k +a)41( 2 +2~f -1 (k +YU)- 2dz*_ M2]s(a, )

Note that the expression for the boundary-layer effect applies for both subsonic

and supersonic flow. It is interesting to note that in the limit of incompressible

flow as M approaches zero we obtain the following result for the boundary-

layer effect:

1 1

BL(a,) = [-f(k +aU)2dz* +(k +a) J(k +aU)-2dz* s(1,P) (7.38)

o 0

In this case the expression multiplying z s(a, ) is independent of P. The Fourier

inversion of (7. 38) yields results identical to those obtained in the two-dimensional

case, equations (3. 67) and (3. 68), with Z s(x) replaced by s(x,y). The inver-

sion for compressible flow is not nearly as simple.

7.5 GENERALIZED AERODYNAMIC FORCE

The Fourier transform expression for the surface pressure may be formally

inverted to obtain

p(x,y, 0) = 1/(27r)2J 5(a,;O)e iiY Pdad (7.39)

Our experience in inverting the transforms in the two-dimensional case has

81



shown that the p2 -term gives some difficulty. Inspection of this term in the

present case shows that the inversion is complicated by the dependence of a

upon a and P. We will not attempt to invert the expressions for the pressure, but

rather we will try to find a more efficient way to use the Fourier transforms

directly.

In the analysis of the phenomenon of panel flutter we are interested in the

"generalized aerodynamic forces" rather than the pressure itself. If we repre-

sent the nondimensional panel deflection as a sum over some assumed modal

amplitude functions

zs(x, y, t) = E Emnm(x)(n(y)e ikt (7.40)

m n
then we can define a nondimensional generalized force Qmnpq as

ikt
Q Q emnpq = Qmnpq

(7.41)

Qmnpq jj mn p(x)*q (y ) d x d y

00

where pmn is the nondimensional pressure due to Emnm n. Dowell (1967)

has shown that a great deal of economy may be achieved by performing the integra-

tion over x and y in (7. 41) before inverting the transform in (7. 39). Then

Qmnpq may be written as

=H (k, M , 6 )E
mnpq mnpq(k o mn

where
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Gmnpq me-ixdx exdx, ne- Ydy eiYdy (7. 43)

where
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K(oa, 0;k, M0 5) = p(a, P;0;k, MS, 5o)/s(a, 9)

from equation (7. 37). This device permits us to use the Fourier transform

expression directly in calculating the generalized force rather than inverting

to obtain the surface pressure prior to calculating the generalized force. In

C h apt e r 9 we apply this method in calculating the boundary-layer contribution

to the generalized force for the case of an infinite-span panel in two-dimensional

supersonic flow.
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VIII. APPLICATION OF THE THEORY TO WIND-DRIVEN WATER WAVES

8.1 INTRODUCTION

The previous chapters have presented the basic ingredients for a

theoretical attack upon the problem of predicting the pressure over an oscillating

surface in flow situations ranging from incompressible low-speed flow to com-

pressible supersonic flow, including two and three space dimensions, and including

separately the important boundary-layer effects; namely, the effects of the mean

shear velocity profile, the viscous stresses, and the turbulent Reynolds stresses.

To give some substance to these theoretical developments and to study a geo-

physical problem of current interest we apply the theory to the air-sea interaction

problem and predict the pressure distribution over a moving water surface over

which a steady wind is blowing. Our goal is threefold. First we would like to

gain some experience in working out an example using the theory to show how one

might actually employ this approach. Second we would like to compare the theory

with the inviscid theory of Miles (1957, 1959b) and note any differences or

similarities. Finally we would like to compare the theory with experiment. For

the latter we examine the laboratory studies of Shemdin and Hsu (1967) and Yu

and Hsu (1971) based on data taken in the Stanford wind-water channel. In this

application to wind-wave interaction we use the inviscid shear flow theory

developed in Chapter 3 for two-dimensional incompressible flow and we do not

include the terms for the viscous stresses and Reynolds stresses in the

perturbed flow.

8.2 SPECIALIZATION OF THE THEORY FOR TRAVELING SURFACE WAVES

Consider the case of a wind blowing over a water surface such as a lake

or the open ocean and refer to figure 2. 1 for a simplified representation of this

flow situation. We can idealize the problem by assuming that the waves are two-

dimensional, that conditions do not vary in the y-direction, and that the waves

extend infinitely far in the x-direction. We represent the wave surface non-
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dimensionally by choosing the wave amplitude function

-lax
Ss(x) = e (8.1)

where the relevant quantities have been nondimensionalized by the wavelength, L,

of the surface waves. Substituting this expression in the generalized expression

for an oscillating surface [see equation (3. 16)] we obtain

z (x, t) = E e- i(a x - kt) (8. 2a)

= E e-ia(x-ct) (8. 2b)

where c = k/a. We recognize this as the representation for a traveling wave

disturbance propagating in the x-direction with phase velocity (nondimensional), c.

Note that a = 2w due to the fact that the reference length is the wavelength, L.

We proceed to specialize the theory developed in Chapter 3 to treat the

present problem. Refer to Chapter 3 for the basic assumptions that were used to

develop the theory and examine Figure 3. 1 for a view of the essential features

of the flow near the traveling wave. We can obtain an expression for the perturba-

tion pressure at the surface in a variety of ways. One rather straightforward

approach using the methodology of 3. 4 would be to reformulate the problem by

assuming that the streamline deviation may be represented as

6(x, z,t) = a(z)e- I(a x - kt) (8.3)

and the perturbation pressure may be represented as

p(x,z,t) = Efr(z)e - i(a x - kt) (8.4)

Substituting = A(z)e - i x and = fr(z)e - ] x in (3. 51) through (3. 55) we obtain

2 -2
' (z*) = 6 0 (k -U) -2 0(0), 0 : z*! s1 (8.5)

L(0) = 1 (8.6)
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"(z*)- (aS 0 )2 6 = 0, z* z 1 (8.7)

,() = 0 (8.8)

r(0)= -6 0 f(k-aU)2 (z*)dz* (8.9)

0

The solution to (8. 5) through (8. 8), matching & at z* = 1, is

2 -2
z*

(z*) = 1 +80 o2 0(0) (k-aU) 2 dz*, 0s z* 1

0

= (1)e 0(z* - ) z* > 1 (8. 10)

Substituting these expressions in (8. 9), evaluating the resulting integrals, and

neglecting terms of 0(6 2) we obtain

40) = -(k-a) 2 /oa + 6 0 - (k-aU)2 dz* + (k-a)4 (k-aU)-2dz* (8. 11)

- 0 0

Comparing this expression with (3. 63) note that the present result is equivalent to

the Fourier transform of the pressure amplitude provided we interpret the Fourier

transform variable, a, as the negative of the wave number of the traveling

surface wave. In terms of the wave phase speed, c, the above expression is

2 2 4
#(0) = -(1-c) +a 6 0 [-H 1 (c) + (1-c) K 1 (c)] (8. 12)

where 1

H1 (c) = f (U-c) 2 dz* (8.13)

0

1

K1 (c) = f (U-c)-2dz* (8. 14)

0
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We recognize the integrals H1(c) and K1 (c) as the familiar integrals from the

theory of hydrodynamic stability mentioned in Section 3.6. Note that the first

term in (8. 12) is the potential flow pressure while the remaining terms are the

first-order perturbation due to the boundary layer.

We can obtain the expressions for the boundary-layer effect in an alternate

manner by substituting (8. 1) in (3. 67) and (C-23). The evaluation of the first term

is rather straightforward, while the second term involves a double integral over

x1 and z*. The integral is evaluated by interchanging the order of integration

and performing the integration over x 1 by making a change of variables,

t = x-x 1 . This resulting integral is evaluated by parts and the remaining

integration over z* gives the desired result, Kl(c).

8.3 EVALUATION OF THE EXPRESSION FOR THE SURFACE PRESSURE

COEFFICIENT

We now consider the evaluation of the expressions H1 (c) and Kl(c).

Expanding the binomial in (8. 13) we obtain

2
H1(c) = c - 2b1c +c1 (8.15)

where

b 1 = Udz*

0

1

1 =f U2 dz*

0

The expression for K1(c) given by (8. 14) may be re-written as

1

Kl(c) = z*' (U)(U-c)-2dU (8.16)

0

This integral has a singularity at U = c, but the singularity can be circumvented

by taking a path of integration that is indented over the singular point c. Refer
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to Miles (1959a) and to Chapter 8 of Lin (1955) for a discussion of this delicate

question. The choice of indenting the contour over the singularity at U = c is

similar to the problem of where to locate the singularity, y 0 = -k/U, in connec-

tion with the inversion of the Fourier transform expressions considered in

Chapter 3 (see Appendix C). In that case we assume that the reduced frequency,

k, is complex with an infinitesimally small negative imaginary part which is

equivalent to disturbances which grow with time. In the present context we

assume that the imaginary part of c is negative corresponding to growing

disturbances in the limit as Im(c) - 0. Indenting the contour over the singular

point is equivalent to locating the singularity just below the real axis in the

complex U-plane.

Integrating (8. 16) once by parts along the appropriate path and then

separating out the singular portion, I , we obtain

1(z*"-z*")dU

K1(c) = -z*' (0)/c - z*'/(1)/(1+c)+ Is  (U-c)c (8.17)

0

where
1

I = z*"fj dU/(U-c) (8.18)

0

Integrating I over the singular point yields

I = z*"{log[(1-c)/c-it} (8.19)
s c

Note that the imaginary component of the pressure is proportional to

3
z*" = -U"/(U') , (8.20)

c c C,

which is related to the curvature of the wind profile (U") at the elevation where

the wind speed is equal to the wave speed. This is an essential feature of Miles'

(1957) theory for the generation of surface waves by a parallel shear flow on the

basis of the inviscid Orr-Sommerfeld equation (see Section 8. 4).
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We can evaluate the integrals H 1 (c) and K1 (c) in (8. 15) and (8. 17)

for a mean shear velocity profile, U(z*), representative of turbulent flow over

water. We choose the logarithmic profile, which has the support of both theory

[Miles (1957)] and experiment [Shemdin and Hsu (1967); Kendall (1970); Stewart

(1970), Yu and Hsu (1971)]. The form we shall use for the present case in

terms of the nondimensional variables is

U = U1 log (z*/z*) (8.21)

where U1 = u /(u K), and where u* is Prandtl' s shearing stress velocity, K

Karm"n' s universal turublence constant, and z* an effective roughness
0

parameter. Using (8. 21) to evaluate (8. 15) and (8. 19) we obtain (see Appendix

E)
2

H1 (c) = c -2b 1 c +c1 (8.15)

where

b 1 = 1-U 1  (8.22)

c I = 1 - 2U +2U 2  (8.23)

and

K (c) = KR (c) + iK (c) (8.24)

where

K1 (c) = -z0/(U1 c) - z*el/U1/[Ul(1-c)]

c/Uz*e

+ 2 log[(l-c)/c] +f[(l-c)/U 1 -f(-c/U 1 )} (8.25)
U
1

where
n

f(w) = w (8.27)n.n.
n=1
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We now have all the necessary ingredients for evaluating the surface pressure

coefficient according to the present first-order theory in terms of the boundary

layer thickness parameter, 6 0. The pressure coefficient is obtained by

multipying the expression in (8. 4) by the factor 2 to account for the appropriate
2

reference quantity, the freestream dynamic pressure, 1/2p um. The surface

pressure coefficient is found using this correction to (8. 4), evaluating at z* = 0,

using (8. 12), (8. 15), and (8. 24), and is given by

C (x,t) = -2ac{(1-c) 2 +6 [H (c)-(1-c) (KR(c) +iK I(c))]}e i (kt-x) (8.28)
s 01 1

We are interested in the magnitude of the pressure coefficient and the phase shift

between the pressure and the wave elevation, z s(x,t) [see (8. 2)]. Taking the

real part of (8. 28) and (8. 2) we have

C = IC I cos [(kt - ax) +cp] (8.29)
p ps s

z = E cos(kt-ax) (8.30)

An equivalent representation is

C = IC cos [(ax-kt) + 0 (8.31)

z = E cos(ax-kt) (8.32)

where

IC I = (R2 +I2)1/2 (8.33)
PS

0 =t- y (8.34)

-1
y = tan-1 (I/R) (8.35)

and where

R = 2a{E(1-c) 2 +a6 [H (c)-(1-c)4 KR(c)} (8.36)
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I = -(2aE)ao 0 (1-c) Kl(c) (8.37)

The representation (8. 31) through (8. 32) is the same form as that used in the

Miles theory and in the experiments and allows direct comparison with those

results. Note that ICps I is the magnitude of the pressure coefficient while 0

is the phase shift relative to the surface wave. In the limit as 0 - 0 we

recover the potential flow result; namely,

Cp I = 2E (1-c)2 (8.38)
sO

90 = 1r (8.39)

Without actually evaluating (8. 33) numerically we cannot draw any immediate

conclusions as to the effect of a finite value of 6 0 in modifying the pressure

magnitude predicted by (8.38) for 60 = 0. However, we can see qualitatively

what will be the effect of a small value of 6 0 upon the phase angle predicted
0

by (8.34). For small 5 0 we find (note that I(c) is negative) that y is small

and positive, thus 0 is slightly less than its potential flow value of J. Note that

for c - 1 we find Y -. 0 and 0 -, I. This seems to indicate that the present

theory predicts zero wave growth for wave phase speeds equal to the wind speed.

It will be interesting to see how this result compares with experimental results

and with the Miles' theory.

8.4 RELATIONSHIP OF THE THEORY TO MILES' INVISCID STABILITY

MODEL

Miles (1957) treated the motion of the wavy water surface as a two-

dimensional mass-spring system with the wave-induced aerodynamic pressure

p as the forcing function. He assumed that the surface displacement z and

pressure pa both vary sinusoidally and can be represented in terms of dimen-

sional variables as

z (x, t) = ae i w(x -Ct) (8.40)

91



Pa(X, t) = (o2l+ f)PalwZ s  (8.41)

where a is the wave amplitude, ac the wave number, C the wave celerity,

(all+ip) a dimensionless pressure coefficient, pa the air density, u1 the

reference velocity at the edge of the viscous sublayer, and a z the wave

slope. The equation of motion for the water surface is

Lz + mz = -Pa (8.42)
tt

where L is a linear operator such that Lzs represents the restoring force

while m is the effective mass per unit area such that mzt is the inertia
stt

term. By substituting (8. 40) and (8. 41) into (8. 42) Miles obtained a first

approximation for deep water gravity waves

S= 1 + (a +if)(ul/C)2] (8.43)
C = C O 1+ 2 p0 1(1

where

C = g/a (8.45)

This gives the following expression for the wave elevation

z =a exp 21 P ( ) 2awC exp[ia (x-C0t) (8.45)
s P0 0 e

We therefore interpret the imaginary part of Miles' pressure coefficient, ,

as a wave growth parameter. The primary problem of Miles' effort was to

determine P from an analysis of the wind field.

Starting from the equations of motion governing the two-dimensional

flow in an inviscid incompressible fluid of constant density [cf. equations (3. 4)

through (3. 6)], assuming small perturbations of a shear flow U(z), introducing

a stream function, 4, and assuming by virtue of linearity that * and p

exhibit the same dependence on x and t as zs in (8. 40) Miles obtained after

elimination of the pressure
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(U-C) z - [fa (U-C) + U ] = 0, (8.46)zz w zz

the inviscid form of the Orr-Sommerfeld equation. The boundary conditions are

that the disturbance shall die out at infinity and that the air-water interface

(originally at z = z0 ) shall remain a streamline. The surface boundary condition

is approximately

*x/(U-C) = ia zs at z = z0 . (8.47)

We note that (8. 46) and (8. 47) are equivalent to the formulation presented in

Chapter 3. If we substitute

v(zx,z) = -4' (8.48)

and

S= 4(z)e (8.49)

in (3. 14) and (3. 16) we obtain using c = k/a the nondimensional version of (8. 46)

and (8.47). The two formulations are identical at this point.

Miles obtained an implicit solution of (8. 46) which yielded

= -Irpc 2 U"/U' (8.49)

where

p = 4/(ulz s )  (8.50)

and where the derivatives are with respect to the variable = w z and thew
subscript c indicates the quantities at z = z . We infer from Miles' result

that only those waves with phase speeds in the range for which -U" is large

may be expected to grow. With a given velocity field P can be evaluated and

the wave growth rate predicted. Miles (1957) attempted an approximate

determination of P, however he chose not to seek an approximate solution for

the case of thin boundary layers as we have done, indicating that such a technique

"is not well suited to the relatively thick turbulent boundary-layer profiles that
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are of interest in the present problem. " He chose instead to seek an approximate

solution for cp using the approximation

51)cp = (U-C)e /ul (8.51)

and prescribing a logarithmic mean velocity distribution of the form given by

(8. 21). Under these assumptions an integral approximation for 0 in terms of

wc was found. In a subsequent paper, Miles (1959b) obtained a numerical

integration of the inviscid Orr-Sommerfeld equation which yielded values of B

that were generally smaller than those estimated in Miles (1957).

For the purpose of comparing with Miles we must obtain an expression

for f. Comparing (8. 28) and (8. 41) we obtain after a little manipulation

S= a6 0(1-c)4KI (c)/U2 (8.52)

where

K I(c) = z*" (8.53)
1 c

Note that the expression in (8. 53) has the opposite sign from (8. 26) which

arises from the differences in the sign of the expression in the exponential

[cf. (8. 2b) and (8. 40)]. The result in (8. 52) is given in terms of the nondimen-

sional variables used in connection with this theory. We can simplify this by

noting that for a logarithmic profile

z*" = z*/U (8.54)
c c 1

Substituting this in (8. 52) and noting that the combination

6 z
b.1 caS6 z* = 2f L 6 c (8.55)

b. 1

we obtain

A = (1-c)4 c/U1  (8.56)

Miles (1957) obtained an approximate expression for P (Qc) for small values
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of the arguments 9c which could be compared with the above expression,

however, one must specify both U1 and z* in order to evaluate the present
1 0

theory.

An alternative is to proceed to express P as a function of the dimension-

less wave speed, c/Ul(=C/ul). The wave number for gravity waves may be

determined from (8.45)

a = g/C 2  (8.57)

Evaluating the logarithmic velocity profile for zc and multiplying by (8. 57)

yields

9c = (UI/c)2e /U1 (8.58)

where we have introduced the dimensionless wind-profile parameter

= gz /ul (8.59)

Substituting (8. 58) in (8. 56) we obtain

f(c/U1 , U1 , ) = jn(U 1 - c/ c)/U/(c/U 1) (8.60)

We can compute P vs. c/U 1 for fixed values of U1 and 0 and compare with

similar results obtained by Miles (1959b). Miles (1957) indicates that an

adequate approximation for the upper limit of validity of (8.21) is uC = 10u 1

(dimensional variables); therefore, we choose U1 = 0. 1 in (8. 60). Choosing
-2

a typical value for 0 used by Miles, 0 = 10 , we evaluate (8. 60) for various

values of c/U . These results and values obtained by Miles (1959b) taken from

his Figure 4 are presented in the accompanying table
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c/U 1  B [Eq. (8. 60)] fM[Miles (1959b)] P/PM

1 537 3.25 163

2 239 3.40 71

4 139 3.00 46

6 90 2.00 45

8 23 .65 35

9 3 .20 15

10 0 -. 02 0

Apparently the two theories are not equivalent as far as the prediction

of the wave growth parameter is concerned. The present theory predicts

values for P which are many times larger than the values predicted by Miles'

theory over almost the entire range of wave speeds. Only for c/U 1 -, 10

(corresponding to c - 1) do the two theories predict values of P that are com-

parable, but in that case the values are negligibly small. We will defer drawing

conclusions from this comparison until we have examined these theories in the

light of experimental evidence. However, we can indicate a possible explanation

for the different results. Earlier in this section we indicated that the two

theories were equivalent as far as the governing equation and boundary conditions

are concerned. The main difference arises from the assumption of thin (in wave-

lengths) boundary layers made in the present theory. We should try to determine

whether or not the application of these theories to treat gravity waves is con-

sistent with this assumption.

We obtain an expression for 60 by multiplying 6b. 1. by the wave

number given by (8. 57), then dividing by 2jr to give

6 0 = b.1. g/(2C2) (8.61)

Introducing ul and um, this becomes
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b. 1. g' )(P'
6 = ( (8.62)

0 2o 21(C/ul)

We use Miles' suggestion that u0 = 10 ul is a rough but adequate approximation

for the wind speed at two meters above the water, hence we take 1. = 2m.
b. 1.

This leaves two other variables to be specified: c/U and u . We take the1
wind speed um = 10m. /sec. as a rough estimate of that quantity for the open

ocean. Putting these numbers in (8. 62) we obtain approximately

6 2 (8.63)
(c/U 1)

For values of 0 equal to or smaller than 0. 10 we find from (8. 63) that

c/U 1 must be equal to or greater than 5. This implies that for these

conditions at least half of the range of c/U 1 in the preceding table is

appropriate to the thin boundary-layer regime. Obviously, this numerical

exercise is not intended to be exhaustive, but it does indicate that the large

difference between the two theoretical predictions of the wave growth parameter

is not necessary due to the thin boundary-layer assumption. Examination of the

two theories in the light of experimental evidence will perhaps clarify the

situation somewhat.

8.5 COMPARISON BETWEEN THEORY AND EXPERIMENT

Having obtained expressions for the aerodynamic pressure over

progressive water waves and having made a preliminary comparison with

Miles' theory, we now attempt a comparison of the two theories with some

experimental measurements conducted in the Stanford wind-wave channel by

Shemdin and Hsu (1967) and Yu and Hsu (1971). We will not describe the

experimental facilities and instrumentation in detail as that information may be

obtained in the two references previously mentioned and in the earlier report

of Hsu (1965); however, we will note the essential features. The channel is

115 feet long and the nominal water depth is 3 feet. Deep water waves
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are generated by a mechanical wave generator which permits the wave

amplitudes and periods to be pre-selected. The wind is generated by drawing

air with a fan at the downstream end of the channel. The key feature of the

experimental method is the use of a wave following device to measure the

instantaneous pressure at a fixed relative distance above the oscillating water

surface to achieve meaningful results. In addition to the pressure sensing

system (refer to the references for details) there is a system to measure the

mean velocity and a wave height gauge.

To produce test conditions that satisfy Miles' inviscid model the

velocity of the freestream must not be less than the wave celerity and the

pressure probe must be inside the critical layer (z < zc) and outside the

viscous sublayer. The measured mean velocity profiles follow the logarithmic

law with respect to the mean water level [equation (8. 21)] in agreement with

Miles' model and the present theory. In evaluating these theories for the

conditions of the experiment we take experimentally-determined values for the

profile parameters, U1 and z*.

The results of a comparison between experiment and theory are

presented in Figures 8. 1 through 8. 7. The results for the pressure coefficient

magnitude, I Cps, and the phase shift, 0, are displayed as functions of the

wave phase speed-freestream wind speed ratio, c = C/u . The present theory

was evaluated using equations (8. 33) through (8. 38) and (8. 15) through (8. 27)

and the numerical results were obtained using a computer for accuracy in

evaluating the series in (8. 27). The Miles' theory results were obtained by

Shemdin and Hsu (1967) and Yu and Hsu (1971) and are reproduced here for

comparison. Figures 8. 1 and 8. 2 correspond to the experiment of Shemdin

and Hsu (1967) in which data was taken mainly from the lower range of c and

for which the boundary layer was relatively thin, 6 0 . 06. Examination of

Figure 8. 1 shows reasonable agreement between theory and experiment for the

wave-induced pressure magnitudes for c between 0. 2 and 0. 4. The potential

flow pressure variation is also presented. The present theory and Miles'

theory are in close agreement for this particular case. For c greater than
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FIGURE 8,1
COMPARISON OF THEORETICAL AND EXPERIMENTAL WAVE-INDUCED

PRESSURE MAGNITUDE VS, WAVE PHASE SPEED
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0. 4 the experimental pressure values are much larger than the values

predicted by the theories, and this could indicate some sort of general trend

if the experimental point at c - 0. 9 is considered to be spurious. The phase

shift variation for this case is presented in Figure 8. 2. Again the agreement

between theory and experiment is reasonable for c smaller than 0. 4. The

most striking feature, however, is the difference between the two theoretical

predictions of phase shift. The Miles theory predicts a gradual decrease in

phase shift with increasing wave phase speed, while the present theory predicts

increasing phase shift with increasing wave phase speed. This behavior

deserves some additional comment.

At first it was felt that the behavior of the phase shift for the present

theory was due to the use of experimental values for the profile parameters

U1 and z*. To resolve this problem we proceeded to perform a sensitivity
1 0

analysis using the computer to evaluate the present theory by fixing one of the

parameters and varying the other parameter. Some of the results of this study

are presented in Figures 8.3a and 8.3b. In figure 8.3a we vary z* with U1

fixed, while in Figure 8. 3b we vary U1 with z* fixed. In both cases we

obtain the same behavior for the phase shift variation; namely, the curves show

o decreasing with increasing c for c less than 0. 5 and 0 increasing for

larger values of c. This exercise shows that the theory is quite sensitive to

the profile parameters; for example at c = 0. 3 a 15% increase in U1 causes

a 45% increase in 0 at constant z*. This points out the importance of

accuracy in measuring the mean velocity profile and also suggests that an area

for possible future study would be the sensitivity of the theory to the type of

profile used in the model, as there is some indication that the experimental

data exhibit a systematic deviation from a least-square logarithmic fit [cf.

Shemdin and Hsu (1967)].

Having eliminated the profile parameters as the source of unexplained

behavior of the present theory insofar as phase variation is concerned, we will

defer further discussion of this matter until the next section and proceed with
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additional comparison of theory and experiment. Figures 8.4 through 8.7

correspond to the recent experiments of Yu and Hsu (1971). These experi-

ments are an extension of and improvement over the earlier measurements of

Shemdin and Hsu (1967). The earlier measurements were limited by the range

of c (most of the data were obtained for c less than 0. 5) and were obtained

with the probe near the outer edge of the critical layer. The more recent

measurements were obtained with the pressure probe at a fixed distance of

1/4 inch above the wave surface and for c in the range of 0. 6 to 1. 0. Figures

8.4 and 8. 5 show the pressure magnitude and phase shift variation for 0. 8 Hz.

waves and 5 0 .18, while Figure 8. 6 and 8.7 show the variation for 1. 2 Hz.

waves and thicker boundary layer, 6 0 . 41. In both cases the phase shift

behavior is similar to the case observed in Figure 8. 2. The experimental

values of e are smaller than the theoretical values and tend to decrease slightly

with increasing wave speed. The present theory gives improved agreement

with the experiment over Miles' theory for values of c less than about 0. 70

but the trend of increasing phase shift with increasing wave speed for larger

values of c indicates a failure of the present theory to adequately model the

experimental behavior. Note that Miles' theory also predicts increasing phase

shift with increasing wave speed for values of c greater than 0. 9 indicating

a failure of his theory in this range.

The behavior of the pressure magnitude is far more striking. The

experimental data are an order of magnitude larger than the theoretical

predictions. The data indicate an increase in pressure magnitude for increas-

ing wave speed, while the theories predict a decrease. Notwithstanding this

disagreement between theory and experiment, the present theory is significantly

closer to the experiment with regard to magnitude than is Miles' theory.

Furthermore the present theory predicts an increase in magnitude over the

potential flow theory while Miles' theory represents a decrease from the

potential flow values. Comparing the potential flow theory with the experimental

results we would at least expect an inviscid shear flow theory to represent

some improvement over potential flow theory.
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8.6 DISCUSSION

The comparisons presented in the previous sections are by no means

exhaustive but they do indicate a rather fundamental failure of an inviscid

shear flow theory to adequately model the turbulent flow over progressive

water waves. Of academic interest at this point are the reasons for the

differences between Miles' theory and the present theory. One aspect of

Miles' results that is a little puzzling is the prediction of phase shift values

approaching 900 for c near 0.90. This would imply large energy transfer

from the wind to the water since e = 900 is the most efficient phase shift for

maximum energy exchange. However, the predicted values of the wave growth

parameter, #, for wave phase speeds in this range are rather small. The

only obvious explanation for this behavior is the fact that Miles' theory pre-

dicts small values of pressure magnitude for c - 0. 90 which tends to explain

the small predicted values of 8. The behavior of the present theory on this

account is more reasonable in that for c - 1 the predicted phase shift tends

to 1800 and the wave growth parameter tends to zero.

We did not make comparisons of the present theory with other experi-

mental studies, notably the data obtained by Kendall (1970) and Saeger and

Reynolds (1971). The Kendall data is for relatively thick boundary layers,

6 0 = 0.75, and is inappropriate for comparison with the present theory. We

might even question the comparison of the present theory with Yu and Hsu

(1971) for the 1. 2 Hz. waves since the boundary layer is relatively thick. Of

more significance, however, is the nature of the moving surface boundary

used in the various experiments. Yu and Hsu (1971) compare with the data

obtained by Kendall and Saeger and with the earlier data obtained by Shemdin

and Hsu (1967) and indicate that there are two distinct groups of data trends

with regard to the phase-shift relation. The Kendall-Saeger data represents

one group and the Shemdin-Yu data represents the other group. The difference

appears to be caused by the differences in boundary conditions in that the

former group have fixed walls as boundaries with progressive waves moving

on them, while the latter have truly deformable boundaries. The solid wavy
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wall can only influence the fluid flow above it in a fixed manner, while the

water surface can change form when acted upon by the wind. This deformation

of the sea surface when the wind is blowing is a coupling process which modifies

the structure of the turbulent Reynolds stress in the airstream and eventually

results in a different momentum transfer rate to the water surface.

The large differences between the experiment and the inviscid theories

for air pressures over moving water waves and the possible mechanism

suggested here point to the inadequacy of an inviscid theory. Recall the order

of magnitude analysis of Chapter 5 indicating that for the low-speed situation

of the wind-water wave problem the turbulent Reynolds stress term in the first-

order peturbation is significant and should not be neglected. The probable role

of the Reynolds stress in the "coupling" process occurring at the air-sea

boundary is important and must be considered in any successful attempt to model

the real world. The recent attempts of Hussain and Reynolds (1972) and Davis

(1972) to model the Reynolds stress terms are promising and this effort should

be continued with guidance supplied by complementary experimental effort. Yu

and Hsu are currently conducting an experimental investigation of the turbulent

structure of the wind in their wind-water channel and have obtained some

preliminary data which indicate that the magnitude of the wave-induced Reynolds

stress, -p -uV, is significantly larger than that predicted by the inviscid model.
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IX. APPLICATION OF THE THEORY TO PANEL FLUTTER

9.1 INTRODUCTION

This chapter is the most exciting part of the present thesis in that it

represents the realization of several years of effort on the title problem, the

original goal of which was to try to ascertain the effect of the unsteady boundary

layer on the stability of the motion of an oscillating panel. We have discovered

in the earlier chapters that it is not a simple task to apply the theory to an

elementary example in the hope of evaluating the soundness of the assumptions

and obtaining solutions for the resulting equations. The results of the preceding

chapter, an application to wind-driven water waves, are somewhat disappointing

in the sense that the present theory does not agree with Miles' theory or with

experiment. Hopefully the results discussed in the present chapter will lend

some confidence to the present effort insofar as the goal of obtaining "useful"

results as well as "interesting" results is concerned.

In the discussion to follow we apply the two-dimensional inviscid shear

flow theory to the calculation of the generalized aerodynamic forces, the

quantity of interest which is directly related to the aerodynamic pressure. We

obtain results for a clamped, infinite-span panel at a low supersonic freestream

Mach number for which the unsteady boundary-layer effect is quite significant,

and we compare with similar results obtained by Dowell (1970). We discuss an

approximate flutter analysis based on a one-mode Galerkin solution to the governing

equation for the panel motion and compare flutter predictions with Dowell' s (1971)

theory and with the experiments of Muhlstein et al. (1968).

9.2 CALCULATION OF GENERALIZED AERODYNAMIC FORCES

For the application of the theory to panel flutter we have already stated

(Section 7. 5) that the quantities of interest are the generalized aerodynamic

forces rather than the pressure itself. This will be elucidated when we discuss

the equation of motion for an oscillating panel in Section 9. 6. In the analysis that
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follows we assume that the panel in question is of infinite span; i. e. , b - CD for

the theory developed in Chapter 7 and in Figure 7. 1. The panel with infinite span

is often referred to as a "two-dimensional plate-column", emphasizing the fact

that the flow depends only upon two space variables and that the panel is actually

a cylinder. We assume further that the panel is clamped at the two ends, x =

0, 1, so that the boundary conditions which the nondimensional panel deflection

must satisfy are

z (x,t) = az /8x = 0, x= 0,1 (9.1)
s s

With a little elaboration we can specialize the development of section 7. 5

for a rectangular panel to the case of a plate-column. Assume that the non-

dimensional panel displacement may be represented as the sum over a finite set

of N assumed modal functions

N

z (x, t) = E (x)e (9.2)

m=l 1

where m,4(x) is the mode shape for the m-th mode and where E is the modal

amplitude for the m-th mode. We have assumed that the motion is simple harmonic

in time. Then the nondimensional generalized force, Q mn, is defined as

1

Qmn(t) = Pm(X, t)n(X)dx (9.3)

0

where pm is the nondimensional pressure due to the m-th mode deflection

z = E mm(x)eikt (9.4)
m

We can represent the pressure as a linear operator, 3, operating on the

deflection, zs , since we are dealing with a linearized aerodynamic theory; thus
m

ikt
pm = p [E e i (9.5a)
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E N ikt (9.5b)
= Em[m(X);k , M. , 6 0]e t.

This permits us to express the generalized force as

Q mn= E H (k;M , )e ikt (9.6)
mn m mnk ' 0

where 1

Hmn(k;M , ) = p[m(x);k,M , ONn(x) d x  (9.7)

0

Note that the function H is actually the mechanical admittance (hence, the
mn

familiar symbol H) since it represents the ratio of the output amplitude to the

input amplitude for sinusoidal motion. Assuming the output to be of the form

Q mn(t) = mn (k)eikt (9.8)

and substituting in (9. 6), we have

H = Qn(k)/Em (9.9)
mn nnm

Rather than evaluating (9. 7) directly using an expression for the pressure

operator, p, we achieve a considerable economy of effort by representing Pm

as an inverse Fourier transform as follows:

1 p iaxed (9.10)
m 2r pme

where pm(a;k, M, 6 0) is the Fourier transform of the surface pressure due to the

m-th mode deflection. Substituting (9. 10) in (9.7) and interchanging the order of

integration we obtain

o 1

H mn- 2rl f P f 4n(x)e axdxda (9.11)

-o 0
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In analogy to (7.44) we can express pm as

Pm = K(a;k, M., 5 0 (a) (9.12)

where K is the Fourier transform of the pressure kernel and where m(a) is

the Fourier transform of the m-th mode shape given by

m 6 =m(x)e-ax dx (9.13)

where

, (x) = 0, x< 1 (9. 14)m x 1

This latter statement indicates that the panel deflection is zero everywhere except

between x = 0 and 1. Substituting (9. 12) through (9. 14) in (9. 11) we obtain

Hmn - 21 K(a;k, M , 0)G mn(a)da (9.15)

where
1 1

Gmn(a) = f m(x)e- adxf n(x)ei-xdx (9.15)

0 0

We obtain an expression for the kernel, K, by noting that

K = p(a;0)/ s(a) (9.17)

where p is the Fourier transform of the surface pressure for two-dimensional

flow developed in Chapter 6 [see (6. 52) and (6. 53)]; thus, for our first-order

theory we have

K(a;k,M ,60) = K0((;k, M +6 KBL(a;k,M ) (9.18)

where
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-(kK)2 (9.19)
K0 1/2 1/2 (9.19)

i0 B(-y 1) (oa- 2 )

KBL = K1 + K2  (9.20)

where
1

K 1  p(k+aU) dz* (9.21)

0

12 f -1 -2 2
[-a 2f p-(k+U)-2dz* +M ]

4  0
K = (k+a) 2 (9.22)

B (a- 1)(a-Y 2)

and where

B = (M 2 - 1)/2 (9.23)

, = -kM /(M -1) (9.24)

2 = -kM /(MO +1) (9.25)

p = [1 + (y-1)/2 M2(1-U2 ) - 1  (9.26)

Having determined a means of obtaining the generalized forces using the

present theory, we proceed to evaluate the expressions analytically. Note that the

linear representation in (9. 18) implies that the generalized forces are of the form

H = H + H (9.27)
mn mn mnL

where

H 1 f KG dmn (9.28)
mn 11 mn4
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H = 6 21 K G  d (9.29)
mnBL 0 2 BL mn

-O

The first term is the inviscid force given by the linearized potential flow theory,

while the second term represents the first-order correction due to the boundary

layer. In evaluating the inviscid term using (9. 28) care must be taken in treating

the singularities of K 0. Examination of (9. 19) reveals that the function K0 has

branch points at 71 and 72 in the complex y-plane. This integral is not easily

evaluated analytically. Rather than evaluating the integral (9.28) numerically, one

can obtain the inviscid term using (9. 7); thus,

1

H mn 0  0 m;k, M ]n(x)dx (9.30)

0

with the expression for the potential flow pressure given in (6. 55); namely,

x

0 = 1/BJ K 0 (x-x 1 ;k, M(ik +d/dx1 ) 2 m(xl) d 1  (9.31)

0

where

-ikM x/B 2
K 0 (x;k,M ) = e O J (kM x/B ) (9.32)

The double integral in (9.30) can be evaluated numerically.

We obtain the boundary-layer contribution to the generalized force by

evaluating (9. 29) analytically. The details of these developments are presented

in Appendix F with discussion of the application of the residue theorem and the

special treatment which allows inclusion of the contributions of the apparent

singularities of the function G mn(). We carry out the evaluation using mode

functions satisfying the end conditions (9. 1); namely,

m (X) = cos [(m-1)rrx] - cos[(m+1)x] (9.33)
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We obtain detailed expressions only for the case m = n = 1, corresponding to

work done on the first mode due to first mode deformation, since our main

objective is the comparison with similar results obtained by Dowell (1970) for

sinusoidal motion. The derivation for this case is explicit enough to allow one

to calculate H for other combinations of m and n, although the task ismn
rather tedious. We do not reproduce here any of the detailed equations associated

with the derivations as they are complicated (see Appendix F); rather, we have

indicated some of the general features and we now proceed to a discussion of the

numerical results.

For the actual calculations we evaluate the real and imaginary parts of

the admittance function H11 according to the linear superposition of (9. 27).

Thus,

R I
H = H + iH (9.34)11 11 11

where
R R R

H = H + H (9.35)11 11 1 1

and

H = H + H (9.36)

We use (9. 30) for the inviscid contributions. As discussed previously we compute

the inviscid terms numerically using the theoretical expression for the super-

sonic potential flow pressure given in (9. 31) and (9. 32). In this calculation we

use a Gaussian integration subroutine to evaluate the pressure, and we use an

adaptive Simpson subroutine for the integration over the panel chord in (9. 30).

The mode function for this case is obtained from (9. 33) for m = 1 and is given

by

41 (x) = 1 - cos(2Trx) (9.37)

We must also specify values for the parameters M and y. We choose M =

1. 20 to correspond to the case of low supersonic flow where the effect of the
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boundary layer on panel flutter stability is most pronounced, and we take y = 1. 40

assuming the air to be a diatomic gas. These values correspond to the case

treated by Dowell and allow us to compare directly with his results.

The boundary-layer perturbations are obtained by the analytical evaluation

of the integral in (9.29) as discussed in Appendix F. Note that the function KBL

depends upon U(z*) and requires an additional integration with respect to z*.

For the purposes of comparison with Dowell we choose the 1/7 power law mean

velocity profile

U = (z*)1/7 (9.38)

representative of the turbulent flow over the undisturbed surface. Measurements

of the mean velocity profile by Muhlstein et al. (1968) for M = 1. 20 indicate

that the 1/7 power profile is a reasonable representation of the observed profile.

The integration with respect to z* over the boundary layer is simplified by

changing variables

dz* = z*' dU (9.39)

Solving (9. 38) for z* and taking the derivative we have

z*' = 7U 6  (9.40)

The integration in (9. 21) is accomplished analytically; however, the analytical

integration of (9. 22) causes some difficulty. As explained in Appendix F this

could be accomplished using the method of partial fractions. In fact an attempt

was made using an algebra routine on a PDP 1011 Computer, and we soon

discovered that the task, though not hopeless, was certainly not worth the effort

that would be required in the resulting algebraic accounting process. We realized

this as soon as the core capacity of the computer was exceeded in the course of

attempting to determine the constants in the partial fraction expansions. We

decided that a numerical integration for this calculation would be more efficient,

and we proceeded to compute the desired integrals making another change of

variables
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U = 1/t (9.41)

and integrating (9. 22) from t = 1 to t = (actually t = N where N is a

number sufficiently large so that the contribution to the value of the integral for

t = N to t = - is negligible). We used an adaptive Simpson routine for this

integration with an initial choice of N = 25 and accuracy (relative error) equal to
-3

10 . To test the accuracy of the numerical integration we made some calcula-
-4

tions with N = 100 and accuracy = 10 and observed no significant changes. The

results for the two calculations were identical up to the first 5 digits.

The results are presented in Figures 9. 1 and 9. 2 in which the real and

imaginary components of the mechanical admittance, H11 (generalized force

)11 for unit modal amplitude in the first mode) are presented as a function of

reduced frequency, k, for three values of boundary-layer thickness, 0 = 0,

.05, and 0. 10. The range of these parameters was chosen in order to compare

with Dowell' s results (Section 9. 3). The effect of the boundary layer is rather

significant at this Mach number. It is well known that for the inviscid theory

at low supersonic Mach number the flutter is of a single-degree-of-freedom type

due to negative aerodynamic damping in the first mode. The boundary-layer

effect on this behavior is most readily observed by considering the imaginary

component of H in Figure 9.2. For the inviscid case H is negative for a11 11
range of k = 0 - . 745 indicating negative aerodynamic damping for that range of

k. For the viscous case with 0 = . 05 the range of k for which negative aero-

dynamic damping can occur is reduced by about 32% and for 6 0 = . 10 the range of

k is reduced by about 46% of the inviscid case. We will compare this feature of

the present results with Dowell in the following section. An important consequence

of this reduction in the range of reduced frequency over which negative damping

can occur is the stabilizing effect of the boundary layer on panel flutter. This will

be verified in our analysis of panel flutter and comparison with experiment in later

sections.
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9.3 COMPARISON WITH DOWELL' S THEORY

We can compare the results of the previous section with the recent work

of Dowell (1970, 1971). Dowell formulates the problem starting with the three

dimensional equations for nonlinear, inviscid flow [see, for example, (7. 3) through

(7. 8)]. He assumes that the flow quantities can be represented as the sum of a

mean flow quantity and a perturbation quantity; for example the x-component of

velocity is

u = U(z) + u(x,y,z,t) (9.42)

Substituting the assumed form of the flow quantities'in the governing equations

and linearizing in the perturbed quantities, he obtains a set of perturbation

equations which he eventually reduces to a single (nondimensional) equation for

the perturbation pressure

2
M 2M 3 2 a dU 1 dTDp - Dv + 2 - D - 0 (9.43)T axaz dz 8z T dz

where the mean flow velocity, U, and temperature, T, are related as in

(6. 10) and where

D = a/at +U a/ax
(9.44)

V2 2/ax 2 + a/az 2 +(L/b) 2 a2 /ay 2

He specifies a wall boundary condition (linearized)

wv = D s (9.45)

on z = s(x, y, t) which he uses along with the linearized and nondimensional form

of (7. 6) to obtain a wall boundary condition for the pressure

a8/az = D2 s (9.46)

on z = .s(x,y,t).
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Note that Dowell' s formulation differs somewhat from the present theory

in that Dowell does not specialize to simple harmonic motion as we have done in

(7.9). Also he does not assume thin (in panel chord lengths) boundary layers.

His basic solution procedure is to employ Fourier transformation in x and y,

numerical integration in z and t, and numerical integration to invert the

Fourier transforms. In obtaining the generalized forces he achieves some

economy of effort by performing the integrals over x and y in his counterpart

to (7.41) before inverting the transform in his counterpart to (7.39).

Another difference between the two formulations is the manner in which

Dowell applies the linearized wall boundary condition on the instantaneous plate

surface, z = zs(x,y, t), rather than on the fixed reference surface, zs = 0. He

emphasizes that this is the most important approximation in the analysis and

claims that application of the boundary condition on is = 0 is physically

unacceptable for the present problem because it grossly overestimates the

stabilizing effect of the boundary layer. He explains this by noting that the mean

velocity at ^s = 0 is zero, and stating that in such a case the fluid loading

appears to be of the virtual mass type and thus provides no mechanism of

instability. In comparing with Dowell' s results we should try to ascertain

whether his conjecture about the relationship between ^s and stability is correct.

We should also point out that application of the boundary condition exactly on the

instantaneous plate surface z s(x,y,t) is difficult since the plate motion is, as

yet, undetermined. Dowell uses an approximate scheme to circumvent this

difficulty by obtaining from a nonlinear flutter analysis a compatibility condition

for which only a single value of plate deflection corresponding to a single value

of dynamic pressure will be compatible with his assumed 2 . There is still

some ambiguity in this scheme since ^s varies continuously with space and

time. To circumvent this difficulty Dowell arbitrarily chooses to equate zs to

the maximum center plate deflection since the results are not very sensitive to

the precise deflection chosen. With the salient features of Dowell' s method

summarized here, we now turn to a comparison of results for the generalized

aerodynamic forces.
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Dowell (1970, 1971) presents results for the generalized forces Q11 and

Q12 for a unit step function (in time) in the first mode. We cannot compare

directly with these results since the present theory yields the response to simple

harmonic motion (the mechanical admittance) rather than the response to a step

function (indicial admittance). Fortunately there is a connection between the

mechanical and indicial admittances which is especially useful when the sinusoidal

behavior of the system is readily available. This is pointed out in the book by

Bisplinghoff and Ashley (1962) where it is shown that the indicial admittance must

be
2 ikt

1 r Hmn(k)e
(t)- dk (9.47)mn 2r ik

where convergence is ensured by requiring the integration path to make a small

semicircular loop below the origin. The formula in (9. 47) provides a means of

converting the results in Section 9. 2 to a form suitable for comparison with

Dowell; however, the indicated integration is rather tedious, though it can be

obtained analytically. Fortunately it is not necessary to pursue this for the

purpose of comparison, as Dowell (1970) presents some results for sinusoidal

motion in the first mode.

In his Figure 6 [see Figure 9. 5] Dowell presents results for the

imaginary component of 1 for unit modal amplitude vs. the reduced frequency,

k, analagous to Figure 9. 2 of the present work. The only significant difference

in the conditions assumed is that Dowell chooses i = . 01, while the presents
results are for zs = 0 (s , the point of application of the surface boundary

condition). We compare with Dowell in Figure 9. 3 for & 0 = . 05 and Figure 9. 4

for 5 0 = . 10. Note that for the thinner boundary layer the two theories are in

reasonable agreement, while for the thicker boundary layer there is considerable

difference between the two results. From Figure 9. 3 we infer that Dowell' s theory

predicts that the boundary-layer effect is slightly more stabilizing (less negative

aerodynamic damping) than does the present theory for k less than about 0. 4,
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while the opposite is true for larger values of k. The net result is that Dowell

shows a slightly larger range of k for which negative aerodynamic damping

occurs (about 6% larger than the present range of about . 51). From these

observations one might tentatively conclude that Dowell' s theory predicts a

slightly greater stabilizing influence of the boundary layer than the present

theory would indicate for this particular case of a thin boundary layer.

This conclusion tends to be confirmed for the case of the thicker boundary

layer in Figure 9. 4. For this case there appears to be a fundamental difference

in the two results. Dowell' s theory predicts no negative aerodynamic damping

for the range of reduced frequency of interest. His theory predicts a stronger

effect of the boundary layer on Q11 (which is known to govern the single-degree-

of-freedom flutter at low supersonic Mach number). In fact, it appears that his

theory predicts that the system is no longer a single-degree-of-freedom system

in that the range of k for which negative aerodynamic damping can occur has

been virtually eliminated. The present theory predicts a range of k = 0 -.. 405

for which Qll is negative. Note that the present theory predicts larger

(positive) values of Q11 than Dowell for k greater than about 0. 5. This same

phenomenon was observed in Figure 9.3 and may indicate that the present theory

predicts a more stabilizing effect of the boundary layer than Dowell' s theory for

larger values of reduced frequency.

One possible explanation for the large differences in the two theories for

the thicker boundary layer is the fact that the present theory is only correct to

first-order in 5 0 while Dowell' s theory is exact in that parameter. The

condition, (6. 63), establishing a relationship between values of the parameters

for which the first-order theory is applicable at small values of reduced frequency

is not easily applied to the present calculations because of the fact that the

velocity gradient U' (0) is infinite for the 1/7 power law profile. However, it

cautions us to be careful in applying the theory for small values of k and

indicates that for a given (small) value of k and for a given velocity profile, the

small perturbation hypothesis might be violated if 6 0 becomes too large. It is

not clear from these considerations, however, why we should observe such
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drastic changes in the character of Q11 for Dowell' s theory as 6 0 is doubled

in value from . 05 to . 10. Furthermore, these observations tend to contradict

Dowell' s supposition that applying the surface boundary condition at 2 = 0

tends to overestimate the stabilizing influence of the boundary layer.

It is interesting to compare the imaginary part of the boundary-layer

contributions to the generalized forces, H (k), for the two theories. The1 1BLBL
results for Dowell' s theory are obtained from his Figure 6 (1970) [see Figure

9. 5] by subtracting the inviscid value (the graph for 5 0 = 0) from the value for

a given boundary layer thickness; that is

I I I
H11 (k; 0) = H1 1 (k;5 0 ) H1 (k) (9.48)

BL 0

In the course of making these comparisons we discovered a small difference

between Dowell' s curve for 6 0 = 0 and the present results for 6 0 = 0. Recall

that the latter results were generated using (9. 30) through (9. 32) and are presented

in Figure 9.2. This discrepancy in H1 1 0(k) can most likely be attributed to a

plotting error in preparation of Dowell' s Figure 6 rather than to an error in the

present inviscid numerical results.

To convince ourselves of this supposition we first attempted to obtain the

numbers that were used to generate Dowell' s Figure 6. These were not readily

available, although we were able to obtain a copy of his original graph. This is

reproduced here as Figure 9. 5 and is about 1. 7 times larger than the figure in his

1970 report. Careful examination of this figure and comparison with the present

results in Figure 9.2 for the inviscid case reveals a small error which appears to

grow with increasing k. To reassure ourselves that there were no major errors

associated with our numerical calculations for the inviscid case we persuaded

Mr. P. A. Gaspers of the NASA Ames Research Center' s Nonsteady Phenomena

Branch to run an independent check on our inviscid results. Gaspers had developed

a numerical procedure to calculate generalized forces for simply supported plates

for various inviscid aerodynamic theories [see Gaspers (1970)]. Without too much

difficulty he was able to obtain results for the clamped plate with which to compare.
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His results are obtained using as mode functions the eigenfunctions for the free

vibration of a beam clamped at both ends rather than using the mode functions of

(9.33). To compare our inviscid procedure with Gaspers' calculations we made

some additional calculations using the beam eigenfunctions and found exact

agreement for these two independent sets of results for the four significant

figures of Gaspers' output. This exercise convinced us that any differences in

our inviscid results and Dowell' s results were most likely due to a plotting

error in preparing his graphs. Dowell (private communication) assures us that

his inviscid scheme for indicial aerodynamics gives correct results since it
+

compares favorably with piston theory for t = 0 and with the Ackeret theory for

t - M /(M -1). The error is not significant enough to alter any of our conclusions,

so we will not belabor the point any further.

Returning to our discussion of the comparison of the boundary-layer con-

tribution to the generalized forces, we present these results in Figures 9. 6 and

9. 7. Figure 9. 6 compares with Dowell for 6 0 = . 05 while Figure 9. 7 is for

50 = .10. The most interesting feature of these two figures is the behavior of

BIH for small values of reduced frequency, k. Comparing the two theories11 BL
for small values of k we find that Dowell' s theory varies approximately linearly

with k while the present theory varies more rapidly with k for small k. In

fact we can verify that the present theory predicts H I k3 for small k. This11 BL
is an interesting result and is indicative of a fundamental difference between the

two theories. We discuss this further in Section 9. 4.

To complete these comparisons with Dowell' s theory we present in

Figure 9. 8 a plot of the imaginary component of the boundary layer contribution

to the mechanical admittance vs. the boundary layer thickness parameter for

k = 0. 5. The present analytical theory, being first-order in 5 0 yields a linear

relationship, while Dowell' s numerical theory includes the higher order terms

in 5 0 and indicates a nonlinear variation of the force with increasing 6 0
Comparing the two graphs near 6 0 = 0 we note that the slopes of the curves

are unequal. The slope of the present theory is about 50% larger than the slope
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of Dowell' s theory at 6 0 = 0. This observation is rather striking, for it

implies that the two theories are not equivalent for very thin boundary layers.

If the two theories were equivalent for thin boundary layers, we would expect

the two curves to agree near 5 0 = 0 and, furthermore, we would expect the

error or difference between the two curves to grow with increasing 6 0. Such is

not the case, however, as the two curves are not coincident for 0 near zero

and the error does not continue to grow with increasing 50 for 50 larger than

about . 05. We observe, instead, an overlap behavior in which the two curves

cross each other at a value of 60 equal to about 0. 11. This seems to indicate

another fundamental difference between the two theories.

9.4 THE LIMITING CASE OF SMALL REDUCED FREQUENCY

In the previous section we observed some interesting behavior of the

imaginary component of the boundary-layer contribution to the generalized force

for small values of reduced frequency, k. In comparing with Dowell in Figures

9.6 and 9. 7 we found that the present theory appears to predict a different
I

variation of Hl1BL with k near zero than Dowell' s theory. In this section we

examine this behavior in greater detail and attempt to draw some conclusions

regarding the applicability of the present theory to this limiting case.

First let us consider the case of inviscid flow at low frequency. For this

case we can readily obtain an expression for the pressure or the generalized

force in the limit as k -0. To obtain an expression for the pressure we use

(9. 17) in conjunction with (9. 19), (9. 24), and (9. 25). Expanding the expression in

(9. 19) for small values of k we obtain

2

p = - 2 . . . a z(C) (9.49)u B B B s

Inverting the Fourier transform we obtain

M
2

(x;k) = (x) - - 2 (x) +. . . (9.50)
s B
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Note that the latter result could have been obtained by expanding the exponential

and Bessel functions in (9.32) for small values of the arguments, substituting

in (9.31), and integrating subject to the boundary condition (9. 1). The first

term in (9. 50) is the familiar Ackeret formula for thin airfoil theory [see

Section 5. 4 of Ashley and Landahl (1965)], while the second term represents

the unsteady perturbation for small reduced frequency which is linear in k

according to the potential flow theory.

We can convert the previous result to an expression for the generalized

force, H1 1 0(k), by substituting l1 (x) for ^s in the above, substituting (9. 50)

and (9. 37) in (9.30), and performing the indicated integration subject to (9. 14)

to obtain a complex expression of the form (9.34) where

R
H (k) = 0+. . (9.51)

11

I I
H (k) = kH (0). . . (9.52)

110 110

where
M 2

I 3 co
H 1(0) 3 ( - 2

11 2B B 2

Note that this latter result could also have been obtained by evaluating the integral

in (9.28) using (9. 17), (9.49), (F-38), and (F-39). In summary we conclude that

for the inviscid theory we expect that the imaginary component of the generalized

force will be linear in k for small values of k. Compare this with what we have

observed about the behavior of the boundary layer perturbations to the generalized

force as mentioned in the previous section. We enlarge upon this in the discussion

that follows.

Turning now to the boundary-layer contributions we can examine the low

frequency regime in more detail by making some additional numerical calculations

at small values of k using the expressions developed in Appendix F. In

Figures 9. 9 and 9. 10 we show the results for the real and imaginary components
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of the boundary-layer contribution to the mechanical admittance, H R and
IBL

H 1 1BL, vs. reduced frequency, k, for k = 0 to . 07. The curve in Figure 9.9

appears to be of the form

R R 12 R
H (k) = H (0) + k H (0) . (9.53)1 1 BL 1 1 BL 2 1 1 BL

The curve has been extrapolated to k = 0 as it was not possible to compute the

value at k = 0 without modifying the program. We were able, however, to verify

this result analytically. The results in Figure 9. 10 are more interesting in that

we are able to compare with Dowell (1970) for the imaginary component. Dowell' s

results appear to be approximately linear in k; that is

II
[H (k) I k[H '(0) (9. 54)11 BLkDOWELL 1 1 B

0 DOWELL
BL BL

while the present theory is precisely of the form

H (k) H 1 '(0) +. . . (9.55)1 1 BL 6 1 1 BL

This latter result has been verified both numerically and analytically as with

(9. 53). We do not reproduce the algebraic manipulations that must be performed

to obtain the expressions summarized by (9. 53) and (9. 54). We simply note here

that one can obtain these results by specializing the expressions in Appendix F to

the case of small reduced frequency. This is accomplished by expanding the

expressions for the mechanical admittance in powers of k for small values of k

and keeping only the lowest order terms.

We note that the numerical results presented in Figures 9. 9 and 9. 10 apply

only for the 1/7 power law velocity profile, while the analytical results expressed

by equations (9. 53) and (9. 55) appear to be valid for all velocity profiles for which

the integral (F-25) [see Appendix F] is convergent. We find that this includes the

power law profiles

U = (z*) / n ,  n 5 (9.56)
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The key feature of the power law profiles which ensures convergence of the

integral (F-25) is the nature of the derivative

z*'(U) = nUn - 1  (9. 57)

near U -. 0. For this special class of profiles the integrand in (F-25) remains

finite for k - 0 because z*' (U) -. 0 faster than the rest of the integrand becomes

infinite as U - 0. With this explanation in mind we should not put much confidence

in the validity of the present theory for all velocity profiles as k - 0. To

illustrate this point consider the fact that for a realistic turbulent velocity profile

the behavior near the wall is generally assumed to be linear in z*; that is,

z*
U = U - z* z* (9.58)

s z* s

Where the subscript s refers to the laminar sublayer near the wall. For this

type of velocity profile the derivative z*' (U) is constant near U = 0, and it

can be shown that for the case k - 0 the integrand in (F-25) is proportional to

-5
U- 5 as U -. 0. We wouldn't be surprised to find that the integral is divergent

and that the theory really is suspect for k - 0 for all but a select class of mean

velocity profiles.

This finding seems to corroborate our earlier discussion in Sections 3. 6

and 6. 5 with regard to the validity of the theory for steady flow. Recall condition

(6. 63) which can be recast in the following form

k >> 0/(U' (0)B) as k - 0 (9.59)

to indicate the minimum amount of flow unsteadiness required for the present

theory to be valid. The condition implies that the theory is not applicable as

k - 0 for velocity profiles with finite gradient at z* = 0. The condition is some-

what ambiguous in the limit as k - 0 for the power law profiles with infinite

gradient at z* = 0. This may help to explain why we get finite results for this

case even though the theory is suspect for k - 0.
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The preceding discussion has served to point out the limitations of the

present theory for treating the steady flow limit. On account of these limitations

we do not attempt to apply the present theory to the case of steady flow past a

rigid wavy wall. We have already pointed out in Chapter 4 in our discussion of

the effects of including viscosity in the perturbed flow that in the limit a.s k - 0

the nature of the problem changes drastically and the effects of viscosity on the

perturbed flow are no longer confined to a thin region of nonuniformity within the

shear layer. On the contrary, the effect of viscosity is felt throughout the shear

layer, consequently we find that the inviscid shear flow theory developed in

Chapters 3 and 6 is inadequate. For a recent study of the flow over a wavy wall

for the Mach number range of interest one should consult the paper by Inger and

Williams (1972) in which a theoretical analysis including the effects of viscosity

in the perturbed flow is presented along with some experimental results and

comparisons of theory and experiment for wall pressure amplitude and phase

shift.

9.5 THE LIMITING CASE OF LARGE REDUCED FREQUENCY

Another special case of interest is the regime of high frequency (large

reduced frequency). While this case is not of particular interest insofar as

panel flutter is concerned (the reduced frequency of panel flutter is generally

within the range 0 < k < 1), it may be of general interest. Hence. we include

a brief discussion here, comparing the effects of the present theory with the

behavior of the inviscid theory.

To obtain the inviscid behavior of the potential flow theory for high

frequency we expand (9. 19) for large values of M k, substitute in (9. 17),

neglect the higher-order terms and invert the Fourier transform to obtain

ik.

0(x;k) - M z (x) + (9.60)

Thus, we find a linear dependence of the surface pressure on reduced frequency

for large values of k.
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Now consider the specialization of the boundary-layer perturbation.

Expanding (9. 21) and (9. 22) for large values of k, neglecting higher-order

terms, substituting in (9. 20) and (9. 17), and inverting, we obtain

6 0OBL(x;k) = -6 0(ik) 2 (1-a)2s(x) +. (9.61)

where
1

a = pdz*

0

As in the previous section we can convert this last result to an expression

for the generalized force, H11BL(k), by substituting 1 (x) for is(x) in the

above, substituting (9. 61) and (9. 37) in (9. 7), and integrating, to obtain an

expression of the form (9. 34) where

H (k) = +8 1+. . . (9.62)

H (k) = O(k - 3 )  (9.63)
1 1 BL

This result has been verified numerically by calculating the boundary layer

contributions to the forces by the procedure described in Section 9. 2 for "large"

values of k. We illustrate the results in Figure 9. 11 for 6 0 = . 05. The

quadratic behavior of H11  with k verifies what we have obtained analytically.
BL

The imaginary component appears to be insignificant for sufficiently large values

of k.

We remark that for the first-order perturbation of (9. 61) to be valid we

must require a condition of small perturbations to be satisfied. Applying (6. 60)

to the present case using the transforms of (9. 60) and (9. 61) we find that we must

have

6<< M k >> 1 (9.64)

0 M k(1-a) '
140
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This puts rather severe restrictions on the practical application of the first-

order theory for high frequency. It requires that the boundary layer be extremel3

thin for large values of the reduced frequency. It is fairly obvious that condition

(9. 64) is violated for the case considered in Figure 9. 11 for most of the range of

frequency. With 0 = . 05, a= .8, and M. 1 condition (9. 64) requires

1 << k << 100 (9.65)

This restricts the theory for this case to values of k ~ 10, which is equivalent to

a frequency of about 103cyc./sec. for u = 103 ft./sec. and L = 1 ft. It is possible

that the present theory might have some applicability to the problem of the

response of panels to turbulent boundary layer excitation or acoustic excitation

in which the primary application would be fatigue or noise radiation problems.

This conjecture is based upon evidence, both experimental and theoretical, of

significant excitation of panels at frequencies of the order of one kilocycle [see,

for example, the work of Wilby (1967)]. We leave this problem for future

investigation and consider the panel flutter problem in the next section.

9.6 AN APPROXIMATE ANALYSIS FOR THE DETERMINATION OF THE

STABILITY BOUNDARIES FOR PANEL FLUTTER

In the present section we develop an approximate technique for analyzing

the motion of an oscillating panel and for predicting the critical values of the

dynamic pressure, the stability boundary at which the flutter motion becomes

unstable and the panel deflections begin to grow exponentially with time. We

consider an elementary model of panel flutter for which we make simplifying

assumptions. We assume that the panel is initially flat as in Figure 7. 1 and that

there are no applied in-plane stresses. As indicated previously, we assume that

the panel is of infinite span and that the panel is rigidly clamped at the ends x = 0

and x = L. Finally, we assume that the aerodynamic forces act only on the side

of the panel exposed to the moving airstream; that is, we neglect the effects of

the cavity on the underside of the panel.
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The governing equation for the dimensional plate deflection, w(x, t), is

a condition of dynamic equilibrium between the structural, inertial, and aero-

dynamic forces acting on the panel and is given [see Dowell (1966)] for the

simplifying assumptions stated above by

4 2 2
w N(i)aw aw = 0 (9.66)

D 4 x x2  P m h  2 + p-p = 0 (9.66)
ax ax at

where D is the plate stiffness for the panel of constant thickness, h, pm is

the plate density, N ) is the nonlinear induced in-plane loading, and p-p is thex
perturbation aerodynamic pressure on the panel surface. The plate deflection

satisfies the boundary conditions at the clamped ends

8w
w - - 0, x= O,L (9.67)ax

We further confine our analysis to linearized theory for which we neglect the

term N( i ) , and we note that the perturbation pressure depends linearly upon w.x
Nondimensionalizing the variables as in previous chapters; i. e.,

z = w/L
S

x = x/L
(9.68)

t = u t/L

1 2
p = (p-p )/(2q);q = 2pu

and assuming simple harmonic motion,

ikt
z = z (x)e , (9.69)

we obtain the nondimensional equation of motion

(iv) Ak2

z (x) ---- z (x) +Ap(z) = 0 (9.70)
s s s

where
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X = 2qL3/D

pL

pm h

and boundary conditions

z = z'(x) = 0, x= 0,1 (9.71)
S S

We propose to solve (9. 70), (9. 71) by Galerkin' s method. We assume

the nondimensional panel deflection may be represented as in (9. 2) as a sum

over N assumed modes

N

zs(x) = E Imnm(x) (9.72)

m=1

where Em are the modal amplitudes and *m are the mode functions satisfying

(9. 71). Substituting (9. 72) in (9. 70) and noting that

N

p= Pm (9.73)

m=1

where pm is the pressure due to E mm, we obtain a single equation of motion

for the N modal amplitudes, Em. To obtain a sufficient number of equations for

the number of unknowns we multiply the equation of motion by n (x) and integrate

over x from x = 0 to x = 1. This gives

N N N

S mnE m CE - Q = 0 (9.74)

m=1 m=1 m=1

n = 1,2,...N

where
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1

S n = m dx (9.75)
mn mn

0

1

Cmn= f (iv) dx (9.76)

nmn m n

0

9.2 which can also be expressed using (9. 7) and (9. 9) as

Q = E H (k;M 6 ) (9.78)
mn mmn k;M

where

Hmn(k;MCO 6 0) = k[m();k,M.. , O]n()dx (9.79)
0

is the mechanical admittance.

The system of equations in (9.74) is an eigenvalue problem. To deter-

mine the critical values of the pair of parameters (X,k) we must equate to zero

real and imaginary parts of the coefficient determinant of the system of equations.

For practical purposes one usually assumes N to be small and determines the

flutter eigenvalues by some sort of graphical or numerical process. This could

be accomplished for N = 2 modes and would require the determination of Hill
H12' H21 H22 as functions of k for given values of M, and 0. Recalling

the difficulty of the task just to obtain H1 1 , we wonder if it would be possible to

perform a flutter analysis using N = 1 mode and obtain meaningful results.

From our discussion in Section 9.2 we know that the panel motion is essentially

a single-degree-of-freedom-system for inviscid flow at low supersonic Mach

number and our results for thin boundary layers in Figure 9.2 seem to support
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the contention that the behavior remains essentially the same even for 8 0 10

in spite of Dowell' s results for that case.

In light of this reasoning we propose to perform a single mode approxi-

mation to the panel displacement and compare these results with Dowell' s two-

mode analysis. For the one-mode approximation we have a single equation in

the set (9.74)

Ak
( S  - C

1 - AH )e 1 = 0 (9. 80)

A nontrivial solution of (9. 80) for flutter requires the complex determinant to be

zero. Setting the real and imaginary parts equal to zero we obtain two equations

for the two flutter eigenvalues

Hl 1(kf;M 0) = 0 (9.81)

11
C

f11 (9.82)f 2
- H (k ;M 8)

4 11 f -M 0

where S11 and C11 are obtained from (9.75) and (9. 76) using (9.37). Integrating,

we obtain

S11 =3/2 (9.83)

C - (2r)4 (9.84)
11 2

From the preceding it is clear that the flutter eigenvalue f depends upon

several parameters; i. e. ,

f = Af(kf;M O,0, ) (9.85)

To determine Af from equations (9. 81) through (9. 84) we first specify M , and
I

8 0 We can find kf graphically from (9. 81) as that value of k for which H1

is zero. For the case M = 1. 2 we determine kf from the curves of Figure 9. 2.
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(kf-kf )

0 kf k0f

0 .745 0

.05 .510 31.5 M = 1.2
co

.10 .405 45.5

These results lend an interesting physical interpretation to the curves of Figure

9.2. We have already noted that for the single-degree-of-freedom system there

is a range of k for which the system has negative aerodynamic damping.

According to (9. 81) the maximum value of k in this range corresponds to the

reduced frequency at flutter. This direct relationship between the flutter

frequency and negative aerodynamic damping is unique to the one-mode approxi-

mation to the motion. Note that as the boundary layer thickness increases there

is a reduction in flutter frequency. From the last column in the table above we

note that the percentage reduction in flutter frequency with increasing boundary

layer thickness, -5 0 exhibits a "diminishing returns" behavior as 50

increases from . 05 to . 10.

Having determined kf, we obtain f from (9. 82). We must find HR (k)

in order to evaluate this expression, and we obtain this graphically from a plot
R

of H vs. k for the given values of M and 60. For example, we use

Figure 9. 1 for the Mach number of interest. Note that we must also specify the

parameter p prior to calculating Xf. In the next section we present the results of

this one-mode analysis and compare with theory and experiment.

9.7 COMPARISON OF THEORY AND EXPERIMENT FOR FLUTTER

PREDICTION

The most recent and thorough experiments to date on the effects of the

boundary layer on panel flutter are those of Muhlstein, Gaspers, and Riddle

(1968) and Gaspers, Muhlstein, and Petroff (1970). In these experiments flutter

dynamic pressure and flutter frequency were obtained for a rectangular unstressed

147



isotropic panel with all edges clamped. For the present comparison we consider

the earlier results of Muhlstein et al. (1968) for L/b = 0. 5, M in the range

1.05 to 1.40, and 5 0 of 0. 032 to 0. 111. From these experiments it is shown

that the turbulent boundary layer has a large stabilizing influence on the flutter

of flat panels and that the effect on flutter dynamic pressure is maximum near

M =1.2 and decreases rapidly with increasing Mach number. In comparing with

these results we focus on this one Mach number and on the range of boundary

layer thicknesses corresponding to the experiments. In Figure 9. 12 we show

flutter dynamic pressure vs. boundary layer thickness. For the plate we note

that the thickness ratio h/a = . 0044, while the mass ratio, 4, ranged from

4 = . 043 to . 09. The theoretical results [with the exception of one case of

Dowell (1971)] are for a plate-column (L/b = 0), while the experimental data

are for L/b= 0.5.

We note that the trend of all the results is an increase in stability with

increasing boundary layer thickness; i.e., an increase in the minimum dynamic

pressure for flutter. With regard to the quantitative aspects of the comparison,

the two-dimensional results are consistently lower than the experimental data

and Dowell' s (1971) three-dimensional theoretical results. Apparently, most

of this difference is due to the two-dimensional nature of the theoretical results.

With regard to the three-dimensional results of Dowell (1971) we note that the

agreement with experiment is better for the thicker boundary layers. Since

Dowell' s results do not require the assumption of thin boundary layer, we

cannot readily explain this behavior.

Concentrating on the two-dimensional theoretical results in Figure 9. 12,

we compare the results of the one-mode linear flutter analysis for the present

theory with the two-mode nonlinear flutter analyses of Dowell (1971) and

Ventres (1972). We should point out that there is some ambiguity introduced by

comparing flutter predictions using different flutter analyses. If we had been
R

able to obtain Dowell' s results for H 1 vs. k, we could have predicted

flutter using his data in a one-mode analysis. According to Dowell' s (1971)
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FIGURE 9.12
COMPARISON OF THEORETICAL AND EXPERIMENTAL FLUTTER
DYNAMIC PRESSURE VS, BOUNDARY-LAYER THICKNESS
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calculations, there is an increase in second mode content relative to first mode

content from about 15% for no boundary layer to 40% for 5 0 = 0. 10. This

indicates that the flutter motion is less of a single-degree-of-freedom type with

a boundary layer present, and we might expect to discover a substantial error

for the present one-mode analysis for the thicker boundary-layer case. Indeed

there are differences in the flutter results for 60 = . 10. We could have

anticipated this earlier w h en w e noted the substantial differences in the

theoretical results for H in Figure 9. 4.
11

The theory of Ventres (1972) is similar to the present theory in that the

assumption of thin boundary layer is made, and an analytical solution for the

pressure in increasing powers of the boundary layer thickness is obtained.

Ventres' theory is based on Fourier transformation in x and Laplace trans-

formation in t. His solution differs from the present one in that the Laplace

transformation and analytical inversion is employed for the time dependency

rather than the more specialized case of simple harmonic motion used in the

present theory. Ventres inverts the Fourier transforms numerically, while we

have done this analytically; he obtains the z*-integration analytically, while we

have done this partly analytically and partly numerically. The results in

Figure 9. 12 indicate some differences between Ventres' theory and the present

theory to first-order in the boundary-layer thickness parameter. In particular,

the predicted flutter dynamic pressures for the present theory are higher than

for Ventres' theory. It is likely that this is mainly due to the one-mode

approximation used in the present analysis, whereas Ventres uses a two-mode

analysis. Dowell (private communication) suggests that the effect of performing

a two-mode analysis for the present theory would be to reduce the predicted

flutter values, thus providing better agreement with Ventres.

In Figure 9. 13 we compare the flutter frequency, Kf, for theory and

experiment where

K = kf( f/p~1/2 (9.86)
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With regard to these results it is interesting to note that Dowell' s theory

predicts that the flutter frequency is essentially constant over the range of

boundary layer thickness, while the experiment and the present theory indicate

a decrease in flutter frequency with increasing boundary layer thickness. Since

Dowell' s results are closer in magnitude to the experimental data, we don' t

draw any strong conclusions from this observation. With regard to the improved

agreement with experiment for Dowell' s (1971) three-dimensional results we

note that the improvement is not as good for thin boundary layers. Recall that

we made the same observation with regard to the flutter dynamic pressure.
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X. CONCLUSIONS AND RECOMMENDATIONS

In the previous chapters we have attempted to discuss conclusions along

with the theoretical developments. At this point we will try to summarize the

important achievements of this study and suggest areas which deserve further

investigation. First of all, the major accomplishment of the present study is a

systematic development of a theory for the perturbed unsteady boundary-layer

flow over an oscillating wavy surface which allows us to consider separately the

effects of a mean shear profile for thin boundary layers, the effects of compres-

sibility and three-dimensionality, the effects of viscous stresses, and the effects

of the turbulent Reynolds stresses. We have discovered that the inviscid shear

flow theory for thin boundary layers is valid for a sufficient amount of flow

unsteadiness, and in that case we can neglect the viscous stresses in the

perturbed flow. We have been able to show by means of singular perturbation

theory that for sufficiently large Reynolds number and reduced frequency the

perturbed flow viscous stresses are negligible. Likewise, with regard to the

effects of turbulence, we have been able to estimate the magnitude of the

perturbation Reynolds stresses and we have found that these terms are important

and should really be included in the analysis.

In applying the present theory to the problem of wind-generated water

waves we find that an inviscid theory is inadequate for modeling the flow and for

predicting the surface pressure. Neither the present inviscid theory nor Miles'

theory is very satisfactory in comparison with laboratory measurements. An

improved theory including the effects of the turbulent Reynolds stresses is

required. This development should include an evaluation of eddy viscosity and

eddy-viscoelasticity models proposed by Reynolds and Hussain (1972) and Davis

(1972) and should involve careful comparison with field data, as well as

laboratory measurements, in order to ascertain the soundness of any proposed

analytical treatment. The study of momentum and energy transfer from the

wind to the water is an oceanographic problem of considerable interest at the

present time, and it is clear that improved theories of wind-wave interaction

will be of great benefit for this field of study.
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The application of the theory to the calculation of generalized aero-

dynamic forces and panel flutter prediction has aroused some questions. In the

comparison with Dowell there seem to be some significant differences in the

predicted mechanical admittance as a function of reduced frequency. In particular,

we found differences in the results for the imaginary component of the admittance

for the case of a 10-thick boundary layer and differences at low frequency in the

boundary-layer contribution to the admittance. Further study is required to

determine whether this behavior represents some novel phenomena or whether

it is merely a limitation of the present assumptions. A comparison of predicted

behavior for the generalized forces with the first-order theory of Ventres (1972)

might be a useful first step. The relatively poor agreement of Dowell' s (1971)

three-dimensional numerical flutter predictions with the experiments of

Muhlstein et al. (1968) for the case of very thin boundary layers is strong

motivation for extending the present theory to three-dimensional flow by con-

tinuing the analysis outlined in Chapter 7.

Finally, there are several areas of current practical and fundamental

interest to which the present methodology might be applied. One possible area

is the problem of sound propagation through a shear flow with applications to the

possible noise abatement of flows in jet engines and of boundary layer flows

around aircraft. The noise problem is currently of great concern in the field of

transportation, and any effort which provides fundamental understanding of the

mechanism of noise generation and propagation is valuable. Another problem of

possible interest is the elusive quest for drag reduction by the use of flexible

walls. Perhaps the present approach could be exploited to study viscous

effects in the hydrodynamics of aquatic propulsion with the goal of understanding

why fish are such efficient swimmers. An area of personal interest is the

nature of the fluid-mechanical aspects of flow in the human respiratory and

cardio-vascular systems. While the present study is not directly applicable to

such problems, there are some fundamentals which could be exploited. For

example, the bio-mechanical flows are unsteady, viscous, and they involve
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flexible boundaries with and without mass exchange. A problem for which the

present theoretical approach is directly applicable is the study of the propagation

of freestream disturbances in a boundary layer with a view to perhaps understand-

ing the mechanism of transition to turbulence. These problems are challenging,

and their study could provide some practical benefits as well as improving our

understanding of the physical universe.
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APPENDIX A

DERIVATION OF THE MOMENTUM-INTEGRAL

EQUATION FOR UNSTEADY FLOW

The governing equations of momentum and mass conservation for the two-

dimensional incompressible unsteady boundary layer are

Ut +uu +wu = +u u +7rz/ (A-l)

tx

u +w =0 (A-2)
x z

In order to obtain the momentum-integral equation we multiply the continuity

equation (A-2) by (ue - u) and add it to the momentum equation (A-2). Thus

we find

zUW2 _W(A-3)-(Uu ) + a-(u u-u) +(u -u)u + a(u w-uw) = -, /p

at e at e e e x z e z

Integrating equation (3) with respect to. z from 0 to 6b. 1.' assuming 6 b. 1. is

constant, yields

6 b. 1. b. 1. b. 1.

j J((u -u)dz + -u(u -u)dz +u (u u)dzex
o o o (A-4)

-Wo(Ue - uo  r o/

where 7o is the shear stress and u and w are the velocity components at

z = 0. It has been assumed that w(ue - u) and r tend to O as z - 6 b.1. Upon

introducing the two boundary layer thicknesses

b. 1.

6* = (1 - u/ue)dz (displacement thickness) (A-5)

5b. 1.

S= f U/Ue(1 - u/ue)dz (momentum thickness) (A-6)
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we obtain the momentum-integral equation for unsteady flow

-(u 6*) + (U2) +u 5 u - w (u - ) = 7/p (A-7)
at e ax e e e Woe 0 0
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APPENDIX B

THE SURFACE PRESSURE IN LINEARIZED UNSTEADY POTENTIAL FLOW

Consider the two-dimensional incompressible irrotational flow over an

oscillating surface of small amplitude which can be described in nondimensional

variables as

S ikt
z = EZ (x)e 0 x s 1 (B-l)

Assume that the nondimensional velocity potential can be represented as follows:

<(x, z, t) = x +E^C(X, z)e ik t  (B-2)

where x is the potential for uniform flow in the x-direction and where cp

is the amplitude function for the perturbation potential. The governing equation

for c is Laplace's equation,

V2CP= 0 (B-3)

and the linearized boundary conditions for 0p are flow tangency at the surface

and vanishing velocity perturbations at infinity; thus,

^(x, 0) = z (x, 0) = (ik +d/dx) s(x) (B-4a)

cpcp= 0 as z- (B-4b)

The unsteady surface pressure is of the form

P = (x)eikt (B-5)

where

Po = - (ik +)/)x) p(x, 0)

The problem for cp can be recast in terms of the Fourier transform defined as

follows:

c(o;z*) = c(x, z)e- xdx (B-6)

Thus
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~ 2-
Czz - a = 0 (B-7)

cz(a;0O) = i(k +a)zs(a)  (B-8a)

, z = 0 as z - o (B-8b)

A solution to the above problem is given by

S= - i(k +a)e zs()/ la I  (B-9)

The transform of the surface pressure amplitude is

Po = i(k +a)(o!;O) (B-10)

Introduction of (B-9) gives

2-
Po = - (k +o) zs(a)/ ea I (B-11)

To obtain the amplitude function ^o(x) one must formally invert the

Fourier transform in (B-11). It is more convenient to use the potential for a

distribution of sources situated on the x-axis which simulates the flow and

satisfies the differential equation (B-3) and boundary conditions (B-4). For the

case of a finite-chord panel on the x-axis between x = 0 and x = 1 we distribute

sources of intensity q(x) per unit length. The perturbation potential amplitude

at (x, z) of an individual source located at (xl, 0) is

d(x, z) = 1/21y q(x)dx log r (B-12)

where r is the distance between the source and the field point. Superimposing the

effect of all the sources we obtain the perturbation potential

1

Qx, z) = 1/2 q(xl)log[(x - xl ) + z j/2 dx (B-13)

0

We determine the source distribution q(x) in the following manner. First we

obtain the velocity component 'v from (B-13) by differentiating cp

Wv = = 12y q(x 2 2 (B-14)

[(x -x) +z]
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We use the boundary condition (B-4a) by requiring thatf 1
Lmz 1/ 2 fq(x1) 2 d = r(x, 0) = (ik +d/dx) s(x) (B-15)

[(x - x ) +z ]

We find after careful evaluation of the left-hand side of (B-15) (see Section 17. 6

and Appendix E. 3 of Karamcheti (1966))

q(x) = 2 W(x,O ) = 2(ik +d/dx)zs(x) (B-16)

Substituting (B-16) in (B-13), evaluating the potential at z = 0, and substituting the

result in (B-5) we obtain the surface pressure amplitude

1

o = - 1/(ik +d/dx)J(ik +d/dx1 ) s(x 1 )log x - x 1 dxl1  (B-17)

o

Alternate forms of the same result are

1

o(x) = - 1/f(ik +d/dx)2 logx - x1 s(x 1 )dx 1  (B-18)

O

1

Po(x) = - 1/ 7flogIx - x 1 (ik +d/dxl) 2 z(xl)d 1  (B-19)
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APPENDIX C

INVERSION OF THE FOURIER TRANSFORMS OF THE

UNSTEADY BOUNDARY-LAYER CONTRIBUTION TO THE

SURFACE PRESSURE IN INCOMPRESSIBLE FLOW

The Fourier transform of the unsteady boundary-layer effect is given by

PBL = P1(a;k) +P2 (a;k) (C-l)

where

1

S= -(k +aU) 2dz*zs(a)
0

4- (
2 = (k +a) F(a,k)2 (a)

and where

1

F(a, k) = (k +aU)-2dz*

0

The inversion of P1 is accomplished by first integrating with respect to z*

which gives

S= - ( k +2kba +ca2)z(a) (C-2)

where

1

b = U(z*)dz*

o

1

c = U2(z*)dz*

Taking the inverse Fourier transform of p1 we find
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p(x;k) = 1/21 [(ik) 2 +2(ik)b(ia) +c(i) ]seia doz (C-3)

This is equivalent to

l(x;k) = (ik) z (x) + 2ikbz'(x) + aZs(x) (C-4)

where we have used the fact that (ia)n z s(a) is the transform of the n-th derivative

with respect to x of z (x).
s

The inversion of P2 is determined most economically by performing

the z -integration after the Fourier inversion has been carried out. Taking

the inverse transform of P2 and interchanging the order of integration we find

1
2-2 4 ix

p2( x;k) =U-21/2w f(a +k/U)-2(k +a) 2s(a)exe dodz* (C-5)

o -

Hence

1

P2(x;k) = (ik +d/dx) U- 2 1 / 2 f f (a +k/U)- 2 zs(a)eix dadz* (C-6)

o -O

The Fourier inversion indicated in the inner integrals in either (C-5) or (C-6)

may be accomplished by use of the convolution theorem for Fourier transforms,

1/27f (a)g(a)eixda =Jf(x - x 1 )g(x 1 )dx 1 (C-7)

Application of this result to (C-5) and (C-6) yields

1

(x;k)  -2 f(x - , U;k)(ik +d/dl zs(x1 )dldz* (C-8)

O -O

or

O -
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where

f(x, U;k) = 1/2tf (a +k/U)-2 e d (C-10)

Interchange of the order of integration produces the equivalent forms

P2 (x) = K(x - x 1 ;k)(ik+d/dxz) s(x 1)d 1 (C-11)

or

P2(x ) = (ik +d/dx)4 J K(x - x 1 ;k) s(x 1)dx 1  (C-12)

where the kernel function is given by the following integral:

1

K(x;k) =fU-2 f(x, U;k)dz* (C-13)

The function f(x, U;k) may be obtained by inverting the Fourier transform

as indicated in (C-10). In order for the integral to converge, k must have a

negative imaginary part that may be taken to be infinitesimally small. With this

provision we can evaluate the transform in (C-10) which can be expressed in a form

suitable for evaluation by means of contour integration

f(x,yo) = 1/2y (a - yo)- e di (C-14)

where

yo =-k/U

We shall employ contour integration in the complex plane defined by = a + i.

Consider a function F of the complex variable y,

1 -2 ixy
F(y) =  (Y- yo ) e (C-15)
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which has a double-pole singularity at y = yo, a point assumed to be located in

the upper left-hand quadrant of the complex plane. Consider the following con-

tours in the y-plane:

C
R

C
0 a YO R

CR

Contour for x < 0 Contour for x > 0

The residue theorem provides a means of calculating an integral around a closed

contour, namely,

§ F(y)dy = 2nit Residues of F(y) (C-16)
C

provided F(y) is analytic everywhere on and inside the contour except for a

finite number of singularities inside the contour. We can apply the theorem to

the contours shown here. For either contour the theorem gives

JF(a)da + F(y)dy = 2i Res F(y) (C-17)

C CR

Consider first the case where x < 0. For this case F(y) has no singularities

within the contour so that the right-hand side of (C-17) is zero. In the limit as

R - co the integral on CR is zero and the integral on the a-axis is the negative

of f(x, yo). Hence,

f(x, yo) = 0, x < 0 (C-18)

Consider next the case where x > 0. In this case F(y) has a double pole

singularity within the contour. In the limit as R -. the integral on CR is

zero, and we have
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f(x, yo) = 2ri Res F(y)I (C-19)0

For the double-pole singularity the residue is found to be

Res F(y) d [( -yo) 2 F(7)] (C-20)
I dy 0 Y-v)I Y

Thus,

iy x
f(x,) = - xe , x > 0 (C-21)

The kernel function defined in (C-13) with (C-18) and (C-21) is

<0
K(x;k) = 1 (C-22)

xfU-2 e-ikx/Udz*, x > 0

0

Since the kernel is zero for negative values of its argument the integral in

(B-11) which gives the pressure can be written as

x

P2(x;k) = K(x - x1 ;k)(ik +d/dx 1 ) s(x 1)dx 1 (C-23)

for a generalized disturbance, and as

x

P2(x;k) =K(x - xl;k)(ik +d/dx ) zs(X)dX 1  (C-24)

for a finite-chord panel on the x-axis between x = 0 and x = 1.
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APPENDIX D

INVERSION OF THE FOURIER TRANSFORMS OF THE

UNSTEADY BOUNDARY-LAYER CONTRIBUTION TO THE

SURFACE PRESSURE IN COMPRESSIBLE FLOW

The Fourier transform of the unsteady boundary-layer effect is given by

PBL +P 2 (D-1)

where

1

Pl = -p(k +aU) dz* 5s
0

1

4k 1 -2 i) 22
(k +a) 4(- a 2f (k + aU)-2dz* +M )z

J S

p2  0

2 =2
(M - 1)(a - 1)(a - )

and where

T = - kM /(M - 1)

y2 = - kM /(M +1)

The inversion of (D-1) gives

PBL = 1/2,1 (l 1  2 )ex d (D-2)

We treat the first term by performing the z*-integration before inverting. Thus

ll(x;k ) = 1/2y [(ik)2a +2(ik)b(ia ia+c(i) se d (D-3)

where

1

a =fpdz*
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1

b =fpUdz*

0

1

c = pU 2 dz*

o

Note that a, b, c are functions of M since p depends upon M . Now inverting

each term in the above expression we obtain

p (x;k, M) (ik) az (x) +2ikb' (x) +c '(x) (D-4)1 C s s

This is quite similar to the expression for incompressible flow, (see Appendix C)

except that the coefficients a,b and c depend upon the freestream Mach number,

M.

We treat the second term by noting that the inverse of the product of two

Fourier transforms is their convolution. This gives

0 2 (x;k, M ) = (ik +d/dx)4 K(x - x 1 ;k, M) s(x 1)d 1 (D-5)

-C

or equivalently,

4A
P2(x;k, MCO) = K(x - x;k , MO)(ik +d/dxl) zs(x 1 )dx 1  (D-6)

-0D

where

K(x;k, M) = K (x;k,M ) +K 2 (x;k, M)

where the Kernel functions K1 and K2 are the inverse Fourier transforms

1
2 -1 -2 ixa
J p-l(k + U) dz*e

Kl(x;k, M) = -1/(2fB2)f (a (D-7)
( 1) (  _ 22 )-c1
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K2 (x;k, M ) =M 2/(2B2)2 e (D-8)2 O I ( - Y1)( - Y2

where

B2 = M2 - 1

By interchanging the order of integration in (D-7) we can express K1 as follows:

1

Kl(x;k, M) =p-1 U-2 F(x, U;k, MC)dz (D-9)

2 ixa

Fl(X, U;k, M) =- 1/( 2B2 J a 2 e (D-10)
-C (a - o ) 2(a - Y)(a - Y2 )

and where

y = - k/U

We can evaluate the expressions for K2 and F 1 by contour integration

in the complex y-plane, y = a + i. Since we assume that k is complex with a

negative imaginary part (see Appendix C) the integrands in (D-8) and (D-10) have

isolated singularities at y = , 1 , and y2 . Note that the location of y 1 and

Y2 is dependent upon the freestream Mach number, M . In particular, Y1

is located in the lower half-plane depending upon whether the freestream is subsonic

or supersonic. For this reason we consider these two cases separately. We will

use the same two contours as in the incompressible case (see figures in Appendix

C) depending upon the sign of x. For x < 0 we use the semi-circular contour

located in the lower half-plane. Recall that for these contours the contribution of

the semi-circular portion of the contour, CR, is zero for integrals of the form

Lim ff(T)dP
R-o jf)dy

CR

where
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M2

f2 - )1(, - 2 ) - l e for evaluating K2
2B

2 ( -2 - -1 - l i x y (D-11)
fl 2 o r- 1  ( 2)

21B
for evaluating F 1

For subsonic flow (M < 1) yo and y2 are located in the upper left

quadrant while y1 is located in the lower right quadrant. By application of the

residue theorem (see Appendix C) we obtain

-21i Residue[f 2 (y)] I , x < 0

K2 =1 1 (D-12)

2,i Residuelf 2 (y)I , x > 0

Evaluating the residues using (D-11) and using the definitions of y 1 and y2 we

have

iM /(2k)e , x < 0
K (x;k , M  -ikx/U2 (D-13)

-ikx/U
iM /(2k)e , x > 0

where

U1 = (M - 1)/M

U 2 = (M +1)/M
2 a

The residue theorem also yields

-2fi Residue[fl 1 1 ) , x < 0

F = 1 (D-14)

(2i' Residues[fl(y)]r , x > 0

Note that in this case there is a double-pole singularity at y = 7 in addition to

the two simple poles at y = y1 and y2 . Evaluating the residues in (D-14) and

simplifying the result using partial fractions we obtain
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2 -ikx/U
- i/(2kM )U (U- U1) e , x<O 0

i/(2kM )- U(U - U) e +

Fl(x, U;k, M) = +[U 2 U(U - U2 )-2 U1 U(U - U1 )-2 + (D-15)

+(ikx-U)((U - U 1)- - (U - U2 ) -1]e ikx/U

x>0

For supersonic flow (M > 1) we find that all three singularities are

located in the upper left quadrant of the complex plane. Since there are no

singularities within the contour for x < 0, both K2 and F1 are zero for

x < 0; hence we can replace the upper limit of the integrals in (D-5) and (D-6)

with x. For x > 0 we have

K 2 = 21ir Residues[f2(y)] Y (D-16)

F1 = 2ri Residues[fl(y)]I  (D-17)

By evaluating the residues using (D-15) we obtain for x > 0

-ikx/U
2 -ikx/U

F (x, U;k, M ) = i/(2kM ) U (U - U 1) e

2 -2 2 -2 -2
- U 2(U - U2 ) e +[U 2 U(U - U2) - U 1 U(U - U1 ) (D-19)

+(ikx - U)((U - U1)
- 1 - (U - U2) -)]e-ikx/ U

It is interesting to note that the kernel function in (D-6) for the supersonic

case exhibits no upstream influence in the sense that the function is zero for

negative values of the argument x - x 1. In the case of subsonic flow the kernel

function is nonzero for both positive and negative values of the argument x - x1.

175



Note the existence of apparent singularities in F 1 at U = U1, U2.

(See (D-15), (D-16).) These can affect the determination of K 1 using (D-9) if

the singularities occur for z* between 0 and 1. This is equivalent to the range

of U between 0 and 1. We note that for subsonic flow the singularities occur

outside the range of integration, while for supersonic flow only the singularity at

U1 is within the range of integration. If we expand F 1 in (D-19) in a power

series in powers of (U - U1 ) and take the limit as (U - U1) approaches zero
-2 -1

we find that the two lowest order terms of O(U - U1 ) and 0(U - U1 ) are

identically zero, leaving terms of 0(1) and higher. The singularity at U1 is

only apparent and does not affect the evaluation of K1 .

Note that we recover the incompressible limit in the subsonic case as

M - 0. In the limit of small M we have U = - 1/M and U = 1/M .

Substituting these in (D-13) and (D-15) and taking the limit as M approaches

zero we find K2 = 0 and

0, x<0
F 1 (x, U;k, 0) = -xe -i k x / U ,  x>0 (D-20)

This gives

1

K(x;k, 0) = - xU -2e -ik/Udz* (D-21)

O

For the transonic case we find that by taking the limit as M - 1 in either

(D-13) and (D-15) or (D-18) and (D-19) we obtain

0, x < 0
K 2 (x;k, M = 1) = (D-22)

-e , x>0

0, x < 0

S2k -2i/2Fl(x, U;k, M = 1) = (U - 2)-2e-i/2 + [(ikx -U)(U - 2)1 (D-23)

- 2U(U - 2)-2 e-ikx/ x > 0
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APPENDIX E

EVALUATION OF THE INTEGRALS H1 (c) AND Kl(c) FOR A

LOGARITHMIC MEAN SHEAR VELOCI TY PROFILE

We want to evaluate

2
H1 (c) = c - 2b c +c 1  (E-1)

where

b= U(z*) dz* (E-2)

0

and where

1

c1 = U2(z*)dz* (E-3)

0

and

K (c) = -z*' (0)/c - z*' (1)/(1-c) + I + Ir (E-4)

where

I = z*" {log[(l-c)/c] - irr} (E-5)
s c

and where

1 (z*" - z*")dz*

r  f (U-c) (E-6)

0

for

U(z*) = U 1 log (z*/z*) (E-7)

or, equivalently,

z* = z* eU / U1  (E-8)
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Substituting (E-7) in (E-2) we have

1

bl = U1  log(z*/z*)dz* (E-9)

0

Changing variables using t = z*/z* we find (E-10)

- 1
z*

b I = Ulz log t dt (E-11)

0

This integrates to

- 1

bl = Ul *(t log t-t) 0 (E-12)

0

Evaluating the result at the two limits and noting that

Lim (t log t)= 0 (E-13)
t- 0

we find

bl = -Ul[log z* +11 (E-14)

We may simplify this expression by eliminating one of the parameters. Evaluating

the profile at the edge of the boundary layer where U(1) = 1 we find that

log z* = -1/U I  (E-15)

Substituting this result in (E-14) we have

bl = 1- U1 (E-16)

Similarly, by substituting (E-7) in (E-3) we have

1

1 = U1 2 [log(z*/z)] 2dz* (E-17)

0
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Changing variables using (E-10) and integrating we obtain

*-1

= U2z* [t(log t)2 - 2t log t +2tL] (E-18)
S 1 0 0

Evaluating (E-18) at the two limits using (E-13) and using L' Hospital' s rule to

evaluate

Lim[t(log t)21 = Lir [log(u 12
u-4c u

t-.0

2log(u - ) u(-u -2

= Lim
U--

= -2 Lim t log t
t-0

= 0, (E-19)

we find using (E-15) that

1 = 1 - 2U +2U (E-20)1 11

We note that (E-7) is not accurate right down to z* = 0 where it gives U = -c,

but the contribution to b1 and c1 for negative values of U is negligible for z*

sufficiently small.

To evaluate K 1 we take the derivatives using (E-8) and find

z*' = z* eU/U1/U1 = z*/U 1  (E-21)

and

z*"= z* eU/U/U2 = z*/ (E-22)
0 11

Evaluating (E-21) at U = 0, 1 we find

z*' (0) = z*/U1 (E-23)

and

z*' (1) = (z1/U )el/ U 1  (E-24)
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Evaluating (E-22) at U = c we find

z*" = z*"(c) = z* e/U1/ (E-25)

Substituting (E-22) and (E-25) in (E-6) we have

1 e/Ulc/UVldv
I z*/U (eU/U1ec/U)dU (E-26)r 0 1 (U-c) (E-26)

0

Making a change of variables

w = (U-c)/U 1  (E-27)

We,find upon simplification using (E-25)

(1-c)/U 1

Ir = z*" f (e -1)dw/w (E-28)

-c/U 1

The integrand in (E-28) is finite at w = 0 by L' Hospital' s rule

Lim (eW-1)/w = Lim e /1 = 1, (E-29)
w- 0 w- 0

and the integral in (E-28) may be evaluated using the power series representation

for the exponential. We find after integrating the series term by term

Ir = z*"{f[(1-c)/U1] - f[-c/Ul]} (E-30)

where Z yn
f[w] nni (E-31)

n=1

Substituting equations (E-5), (E-23), (E-24), (E-25), and (E-30) in (E-4) we

obtain

K1 (c) = K (c) + iK (c) (E-32)
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where

K1 (c) = -z/(Uc ) - z e 1/[Ul(1-c)]

+ z ec /U/~ {1o ( -c ) /c + f[l(l-c)/U]-f[-c/U11]}  (E-33)

KI (c) = -rrz*eC/U1/ 2 (E-34)
181 1
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APPENDIX F

EVALUATION OF THE UNSTEADY BOUNDARY-LAYER CONTRIBUTION

TO THE GENERALIZED AERODYNAMIC FORCE FOR SUPERSONIC

FLOW OVER A CLAMPED PLATE USING A POWER-LAW

VELOCITY PROFILE

The unsteady boundary-layer contribution to the generalized aerodynamic

force given in terms of the mechanical admittance for simple harmonic motion is

Co

HmnBL 6 2 K (BL a ;k,M )Gmn ()da (F-1)

where

K BL(a;k, M) K= +K2 (F-2)

1

1 = - p(k +a U) 2dz* (F-3)

0

1

(k+a)4 [.2f p-1(k+aU)-2dz*+ M2

K 2 0 (F-4)
K2 B2(a-y1)(a-2 (F-4)

and where

B2 = M2 -1 (F-5)

1 = -kM /(M-1) (F-6)

-y2 = -kM /(M +1) (F-7)

p = [1 +(y-1)/2 M (1-U) -  (F-8)

where

182



1 1

Gmn(a) = f 4m(x)e-ixdxf n(a)ei adx (F-9)

0 0

and where

4,(X) = cos[(m-1)yx]-cos[(m+l)ffx] (F-10)

is the mode shape for a clamped plate-column satisfying the end conditions

, (x)= ' (x) = 0, x = 0, 1 (F-11)
m m

Substituting (F-10) in (F-9) and evaluating the resulting integrals we obtain

22 m-a nia m+n
16mn2 a [1+ (-) e (-)n e + (-1) + n ]

G (F-12)mn 2 22 2 22 2 22 22
[a -2_(m-) 2 T[a -(m+ 1) J[a 2_(n-1) ][a-(n+l) 2]

Substituting (F-2) through (F-4) in (F-1) we obtain

H BL= 6 [I +J +K mn ]  (F-13)
mn 0 mn mn mn

where

S1

In 1 p(k2 +2akU + 2 U2 )G dz*da (F-14)
mn 21f ) mn (F-1)

-O 0

4
2 (k.a) G (a)da

=M2/(2 yB2) mn (F-15)
mn = _O (a-71)(a-7 2 )

Go 1 2 4 -1 -2
a 2 (k4a) p U G dz*da

K = -1/(2yB2) ff mn (F-16)

- 0 (a- yl)(a - 2) (-

and where
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TO = -k/U(z*) (F-17)

We can express (F-14) compactly as

I = -[aA k + 2bB k +cC ]  (F-18)
mn mn mn mn

where
1 1

a = fpdz* =f pz*' (U)dU (F-19)

0 0

1 1

b = f pUdz* =f pUz*' (U)dU (F-20)

0 0

1 1

c =f pU2 dz* = pU2z*' (U)dU (F-21)

0 0

and where

A = 1/(21) f G da (F-22)

B = 1/(21) f aG mda (F-23)

C mn= 1/(21)f aG mnd (F-24)

Interchanging the order of integration in (F-16) we have

1 1

K mn = f - 2 Lmndz* = p-U-2z*' (U)L dU (F-25)

0 0
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where
co2

a G doa
-1 _ mn

L - n 2 (F-26)mn 2 TB2  0

One can evaluate the integrals (F-15), (F-22) through (F-24), and (F-26)

using the expression in (F-12) for G . We will illustrate the procedure for themn
case m = n = 1. In that case (F-12) may be simplified to

G 2(21r) 4(1-cosa) (F-27)
11 2 2 2 (F-27)

a (a-2ff) 2(a+2f) 2

where we have used the identity

cosa= 1/2(e + e ) (F-28)

Note that G11 has apparent singularities at a = 0, ± 217. Taking the limit of the

expression in (F-27) and applying L' Hospital' s rule successively we find that the

limits G11 as a -. 0, ± 2fr are finite. The fact that G11 is analytic allows us

to use contour integration to evaluate the desired integrals; however care must

be taken to include the contributions to the integral from the apparent singularities.

For each of the integrals we choose the contour r 1 in the complex y-plane as

shown in the sketch below

ip

r

IE r
-27 2To

3
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An equivalent contour for 1 would be the line f = E where E is the infinitesi-

mal radius of the small semi-circles above. In the limit as E - 0 this contour

is equivalent to the one in the sketch.

We evaluate All by substituting (F-27) and (F-28) in (F-22) to obtain

A11 = 2(2r)3[I11 I2-I3] (F-29)

where

1 = 2 d (F-30)

- a (a-2) (a+2 2)
-O

S= 1/2f e ada (F-31)
Sa 2(a- 2 1r) (a+ 217)

I = 1/2 e (F-32)
3 (a-2) 2(a+21r)

We evaluate these integrals using the appropriate contour in the sketch above.

Thus to evaluate (F-30) we apply the residue theorem to obtain

f f(y)dy + f(y)dy = 0 ('-33)

1 2

where

1
f(y) = 2 +2 2  (F-34)

In the limit as E - 0 and R -. = the first integral is I1 and the second integral
-51

is zero since the magnitude of'the integral is O(R - 5 ) as R becomes large. Thus

I1 = 0 (F-35)

Similarly, applying the residue theroem to evaluate (F-31) we have
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1/2J f()eiYdy + 1/2 f(yy)edy = 0

1 2

Again we take the limits, note that the first integral is I1 and the second

integral is zero since its magnitude is O(R-5 e R ) as R becomes large. Thus,

12 = 0 (F-36)

Applying the same technique to evaluate (F-32) we have

1/2f f(y)e dy + 1/2 f() e - i d  = 2 i  Res[(y) e - iY]

1 2 70, 21, -2f (F-37)

Note that we have used the large lower semi-circular contour in this case to take

advantage of the fact that the contribution of the second integral is zero in the

limit as R - . Upon taking the limits the left-hand side of (F-37) becomes equal

to 13. Evaluating the residues in (F-37), substituting this along with (F-35) and

(F-36) into (F-29), we obtain

All = 3/2 (F-38)

By the same technique we find that

B11 = 0 (F-39)

C11= 2r 2  
(F-40)

Note that we could have surmised the result in (F-39) by simply noting that the

integrand is an odd function of a [see (F-23), (F-27)] and hence is equal to

zero over the doubly-infinite range of integration.

Similarly we evaluate Jll using (F-15), (F-27), (F-28), and the technique

of separating the integral into 3 integrals as in (F-29). In this case the integrand
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has singularities at y1 and y2 located in the upper-half plane for infinitesimal

negative values of the imaginary part of k. Evaluating the integrals using the

residue theorem and taking the limit as I (k) - 0 we obtain after a little

manipulation

24 2 R I
S= M a /B [j +i ] (F-41)11 0 1 1  j 11

where

4 4
R 1 (Y1 +k) siny 1  (Y2+k) siny2

S11 (Y-L2) I2 2 2 2
11 1 0 100 2 2 - 02( 2+0 ) 2

4 4
(k+ao0) (k-a 0 ) k4

4 4

4(yI- 0 )a(2 -40 )a 0  4(-I+a0) 2 (y2+ao) 2  Y I 2 a4

.I (1 1+k) 4 (1-cosy 1) (y2 +k)4 (1-cosy 2)
11 (1-2) 2 2 2 2y 2 2

2 1 (Y- )(Y+a0) 2 ( 2 a 0 )( 2 +a0 )

where a = 2 7. Similarly, we evaluate L 1 1 using (F-26) through (F-28) and by

applying the same technique using the residue theorem and noting the appearance

of an additional double-pole singularity at 0, we obtain

L11= -/B 11 + (F-42)

where

R 1 (y 1 +k)4 siny1  (2+k) 4 siny2
11 (l 2 - 0 y-y 0 ) 0 2 0) (2-Y) 2 (2 -  2 02 +0 ) 2

4(0 + k)
3

+ siny 0

0 ( 0 -v 1 )( 0 - 2 )(v 0- ao0 )2 ( 0 +a0 )2

(continued)
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-(Y 0+ k)4 2 2
- (0-1) (T0-T2)(0 - a0) 2(0+O0 2

+1 2+ +

(0 1 01 2 )2(y)0+0 2  0-1)02)( 0 - O0 ) 3( 0 +0 ) 2

+ (k+ (k+- c0 )4 os4a2/)(0-- )(a - a0)2 3 () 20)(Y0-a2)T0 +o02

(70 1 0 2 0 GO 0+a 1 0 2 0 0 0+a0

444

2 2

1 1 k)4 (1-cos 1  + k)4 ( 1-cosy2)

- ( 0
+k)4  ) 2 - 2 2(0- 1  0- 2)( 0-a0) 2 0 0 )

1 2
+ +

(T0-T)(Y -T 2 ) (10 2 0-a 0 ) 2(0+ 0) (C+0-0 )(Y 0- T0_ 020 03 )

S 2 3 2 2

(Y0-Y,)(y,-y2)(Y0-a0) (Y +a 0)  (y 0 -YI)(T 0 -Y 2 )(TO-a 0 ) (T 0Y4 0 )

Note that the expressions in (F-41) and (F-42) have apparent singularities

for values of k such that

Y1, 2 - 0, a0 (F-43)
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and for values of U such that

71 - V0  (F-44)

Fortunately the singularies are "apparent" in the sense that a careful evaluation

of the expressions for the limits given in (F-43) and (F-44) shows that the

functions are analytic at those points.

In summary we note that the essential ingredients for the calculation

of the admittance, H1 1 BL(k), are contained in equations (F-13), (F-18) through

(F-21), (F-38) through (F-40), (F-41), (F-25), and (F-42). In order to complete

the calculation one must assume a particular mean flow velocity profile, U(z*).

For the 1/n power-law profile for turbulent flow,

U = (z*) / , (F-45)

we find that it is convenient to evaluate the integrals a, b, c, and K1 1 [(F-19)

through (F-21), (F-25)] using U rather than z* as the variable of integration.

From (F-45) we find

z*' = nUn - 1  
(F-46)

Substituting (F-46) and (F-8) in (F-19) and (F-21) we obtain

a = nIn-1(A, B) (F-47)

and

c = nI +(A, B) (F-48)

where

1

I (A, B) = UU(F-49)

f A-BU
0

and where

A = 1 + (-)
2 o
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B= (y-l) M2
2 O

The integral defined by (F-49) is successfully treated by integrating by parts

an appropriate number of times. This is equivalent to using the recursion

formula

q d -U A q-2 -1
U dU -u-1 U q-2f-ldU (F-50)J -u B(n-1) BJ

where

f(U) = A-BU2

For turbulent flow the parameter n = 7 is an appropriate number to use over a

wide range of Reynolds number. Successive application of the rule (F-50) to

(F-47) and (F-48) for n = 7 yields

IS(A, B) = -1/(7B) + (A/B)I6(A, B) (F-51)

I6(A , B) = -1/B[1/5 + 1/3(A/B) +(A/B) 2

3 1/2 A + (AB)I/2 -
+ 1/2(A/B) /(AB) log 1/2 (F-52)

A - (AB) 1/2_J

The remaining integral, K 1 1 , is found by substituting (F-46) and (F-8)

in (F-25). This yields

K11 = n[AF n-(k) - BF n+1(k) ]  (F-53)

where

Fq(k) = UL 1 1 (U;k) (F-54)

0

and where L1 1 (U;k) is given in (F-42). The explicit dependence upon U is

found using (F-17). It is convenient to make a change of variables

U = 1/t, dU/U 2 = -dt (F-55)
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in evaluating (F-54) owing to the fact that the integrand is indeterminate for

U - 0. This gives

Fq(k) = t- Lll(t;k)dt (F-56)

1

This change merely transfers the difficulty to t - o, however the form (F-56) is

more suitable for numerical integration. It would be possible to evaluate (F-56)

analytically using partial fraction expansions to simplify the function L11(t);

however, the algebraic manipulation required to determine the unknown

coefficients is horrendous. The alternative is to evaluate F -(k; M., )

numerically, specifying the parameters q, k, M., and y [y being the ratio of

specific heats in (F-8)] for each computation. The only possible difficulty in

such an undertaking is the treatment of the apparent singularities of L1 1 (t). In

any numerical evaluation care must be taken to exclude the contribution to the

integral within E of the singularities, where E is chosen so as to provide a

desired accuracy.
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